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1 Radio Frequency (RF)-based gesture recognition
¢ Contactless and device-free human-machine interaction
¢ Each gesture has a unique pattern, and RF signals can capture these differences

% Applications like smart homes, autonomous driving, and interactive gaming
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Principle of RF-based gesture recognition Applications
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U Existing RF-based gesture recognition

% Uses millimeter-wave (mmWave) signals from frequency-modulated continuous-wave
(FMCW) radar to capture the gestures

¢ Limitation 1: Deployment of mmWave devices in the data collection area.

%+ Limitation 2 : The pre-collection of numerous gesture instances.

Redundant data collection process
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diRadar: synthesizing millimeter-waves from wearable inertial inputs

% Leverage the Inertial Measurement Unit (IMU) signal in modern mobile devices to
simulate the mmWave of different gestures.

¢ Eliminate the need for prior mmWave data collection.
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Motivation for iRadar
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Challenges
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d Intrinsic difference between IMU and mmWave signals
¢ Inertial forces and joint rotations on IMUs VS Reflection and scattering effects on

mmWave signals

¢ Real numbers VS Complex numbers

A\ | Mg(t) = LUg(T))
Transfer function

Mg(t) =D+ E[BJCOS (Im +a(t) - %) - ‘Pe Is(t) = ¥nGila(t))
mmWave motlon sensing IMU motion sensing

[ D) ICK

mmWave Radar Smart Ring

Principle difference.

—— Imag

Real
'['I'“rﬂlr 1| wrmrnr

Norm. Amp.
2
c

0 1000 2000 3000 4000 5000 6000
Samples

Signal difference.

5/19



Challenges

J Noisy gesture sensing in mmWave radar
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% Range-Doppler Map (RDM) contains interference components (by different body parts)

¢ Time-Frequency map contains static and dynamic noises
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Noisy gesture sensing.
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d Correlation model
¢ Different gestures induce correlated changes in mmWave and IMU spectrograms.

¢ There exists a possibility of converting IMU data into mmWave data through a non-
linear function.
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(a) Lateral raises. (b) Front raises. (c) Pushes. (d) Horizontal rotations.

Gesture cycles with corresponding IMU and mmWave features.
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System design

J iRadar workflow
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iRadar workflow
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d mmWave heatmap generation

% Subtract the average of all IF signals (static noise vector) to obtain the denoised data
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System design

(J mmWave Heatmap Generation
% Morphological Clustering for mmWave Heatmap Enhancement (MC-MHWE)

% 1) K-means clustering: segregate the pixels into two discrete categories, discard red part

% 2) Morphological closure operations: bridge the discontinuities, shown in green
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MC-MHWE process
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J IMU Spectrogram Generation
% Maximal Overlap Discrete Wavelet Transform (MODWT) for denoising.

% Short-Time Fourier Transform (STFT) for spectrogram generation.
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System design

U IMU-to-Radar (I2R) diffusion model
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% Bridge diffusion-based translation (Brownian bridge diffusion)

o520

¢ It offers direct mapping and bidirectional transformation capabilities, enabling efficient
and stable conversions
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(a) Structure of IMU-to-Radar diffusion model
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J I12R diffusion model

% 1) Learnable Dilated Convolutional Neural Network (LDCNN)-based feature extraction

/

% 2) Gate module for feature fusion
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4 I2R diffusion model training progress

¢ Front raise, lateral-to-front raise, push, and forearm supination

Gesture samples

100
Epochs

Training progress for various gestures. 14/19
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U Doppler transformer for gesture recognition
¢ Spatial heatmap shift and patch embedding for enriched representation information

% Temporal attention layer for comprehensive understanding
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Experimental settings e

(] Data collection

* IWR1843 mmWave radar and different mobile devices

¢ Indoor, outdoor, and through-wall experiments

/

¢ 18 distinct gestures

Devices and scenarios

Gestures in the dataset.
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Experiment results

 Overall performance

¢ The Top-1 accuracy for indoor, outdoor,
and through-obstacle are 93.1%, 94.3%,
and 89.6%, respectively.

¢ Top-3 accuracy values are above 99%.

(d Comparison with baselines

% Wu et al. (Doppler map-based),
mHomeGes (point clouds-based), Nguyen
et al. (IMU-based), and Vid2Doppler
(video translated mmWave heatmaps).

¢ iRadar demonstrated comparable

performance to state-of-the-art systems.
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Conclusion & future work ekt (R G

d We introduce iRadar, the first mmWave-based gesture recognition system that
addresses the key limitations of explicit data collection.

1 Our comprehensive evaluation shows iRadar's exceptional performance,
achieving over 99% Top-3 accuracy across diverse scenarios.

 Future work will be directed towards expanding the application of this system to
other use-cases such as human activity analysis.
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Thank you!
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