

iRadar: Synthesizing Millimeter-Waves from Wearable Inertial Inputs for Human Gesture Sensing

Huanqi Yang¹, Mingda Han², Xinyue Li³, Di Duan¹, Tianxing Li⁴, Weitao Xu¹

¹City University of Hong Kong

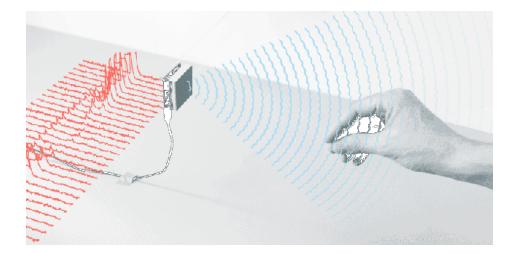
²Shandong University

³Xidian University

⁴Michigan State University

□ Radio Frequency (RF)–based gesture recognition

- Contactless and device-free human-machine interaction
- ✤ Each gesture has a unique pattern, and RF signals can capture these differences
- ✤ Applications like smart homes, autonomous driving, and interactive gaming



Principle of RF-based gesture recognition

Applications

Background

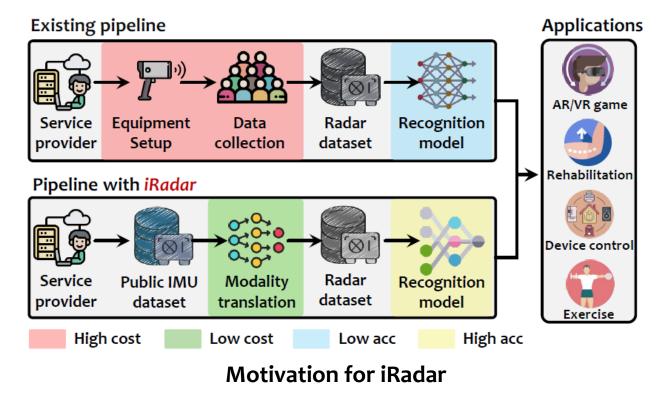
Existing RF-based gesture recognition

- Uses millimeter-wave (mmWave) signals from frequency-modulated continuous-wave (FMCW) radar to capture the gestures
- Limitation 1: Deployment of mmWave devices in the data collection area.
- Limitation 2 : The pre-collection of numerous gesture instances.

Our solution

□ iRadar: synthesizing millimeter-waves from wearable inertial inputs

- Leverage the Inertial Measurement Unit (IMU) signal in modern mobile devices to simulate the mmWave of different gestures.
- Eliminate the need for prior mmWave data collection.



□ Intrinsic difference between IMU and mmWave signals

- Inertial forces and joint rotations on IMUs VS Reflection and scattering effects on mmWave signals
- Real numbers VS Complex numbers

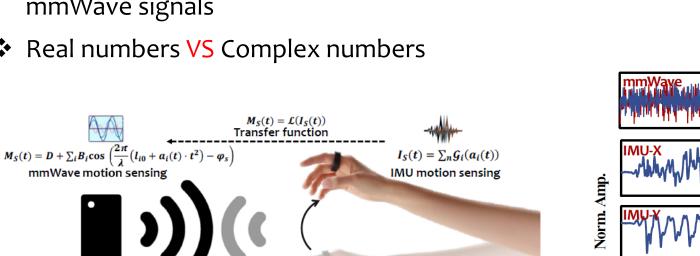
Challenges

mmWave Radar

Principle difference.

Norm. Amp. 2000 3000 4000 5000 1000 6000 Samples

Signal difference.

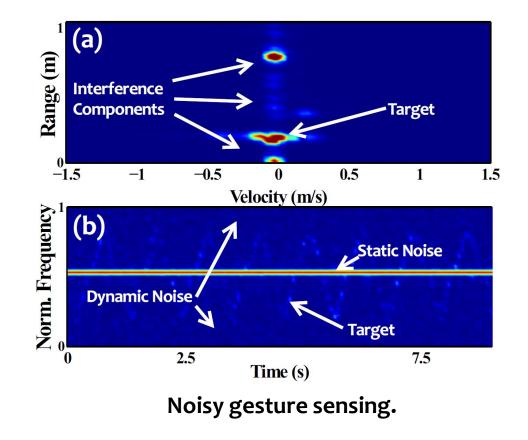


Smart Ring

Challenges

□ Noisy gesture sensing in mmWave radar

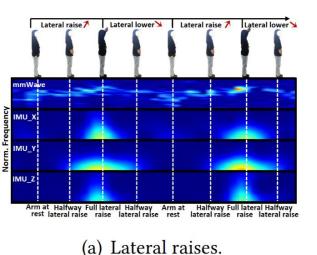
- Range-Doppler Map (RDM) contains interference components (by different body parts)
- Time-Frequency map contains static and dynamic noises



Feasibility study

Correlation model

- Different gestures induce correlated changes in mmWave and IMU spectrograms.
- There exists a possibility of converting IMU data into mmWave data through a nonlinear function.



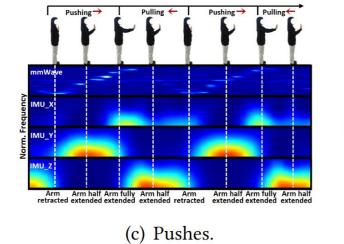
(b) Front raises.

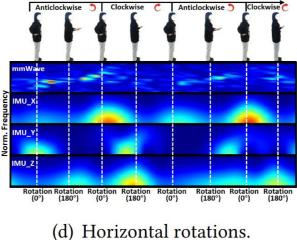
Front lower

Front raise 1

Front lower

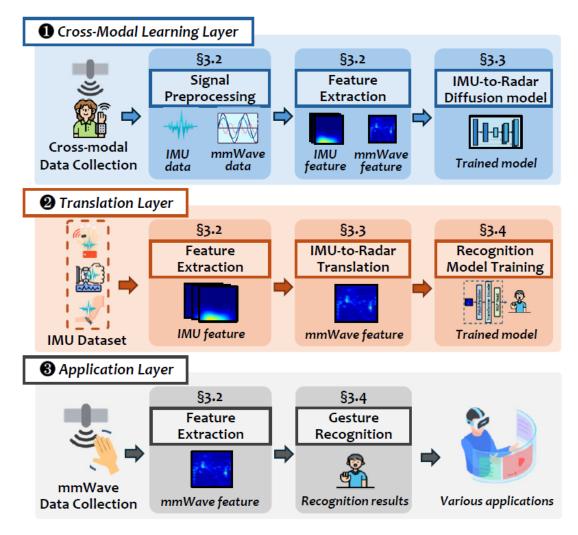
Front raise





Gesture cycles with corresponding IMU and mmWave features.

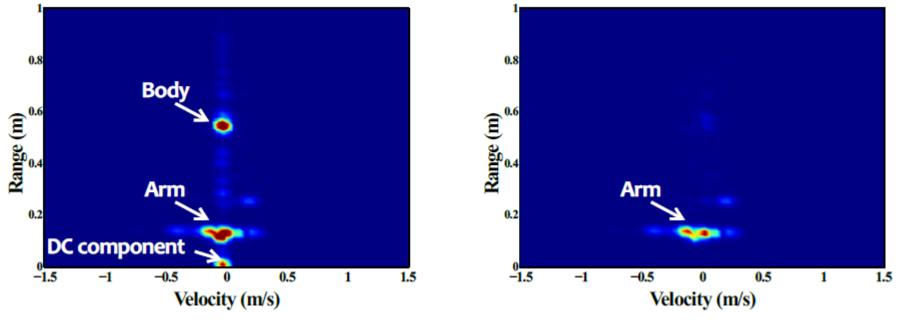
□ iRadar workflow



iRadar workflow

ImmWave heatmap generation

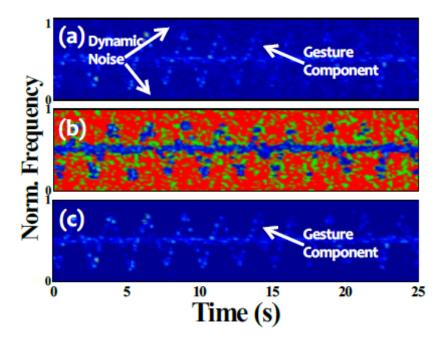
Subtract the average of all IF signals (static noise vector) to obtain the denoised data



RDM denoising

ImmWave Heatmap Generation

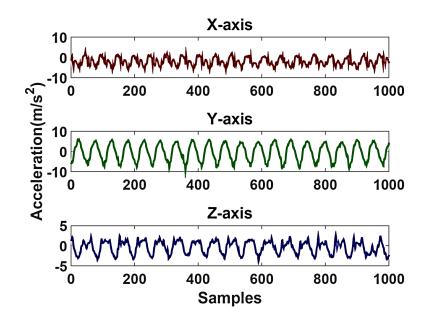
- Morphological Clustering for mmWave Heatmap Enhancement (MC-MHWE)
- ✤ 1) K-means clustering: segregate the pixels into two discrete categories, discard red part
- ✤ 2) Morphological closure operations: bridge the discontinuities, shown in green

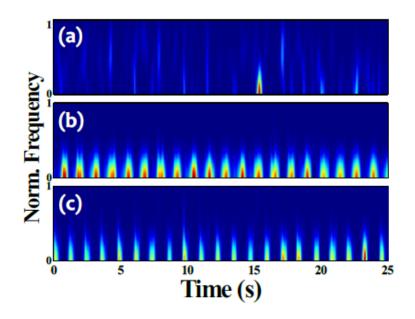


MC-MHWE process

□ IMU Spectrogram Generation

- ✤ Maximal Overlap Discrete Wavelet Transform (MODWT) for denoising.
- ✤ Short-Time Fourier Transform (STFT) for spectrogram generation.

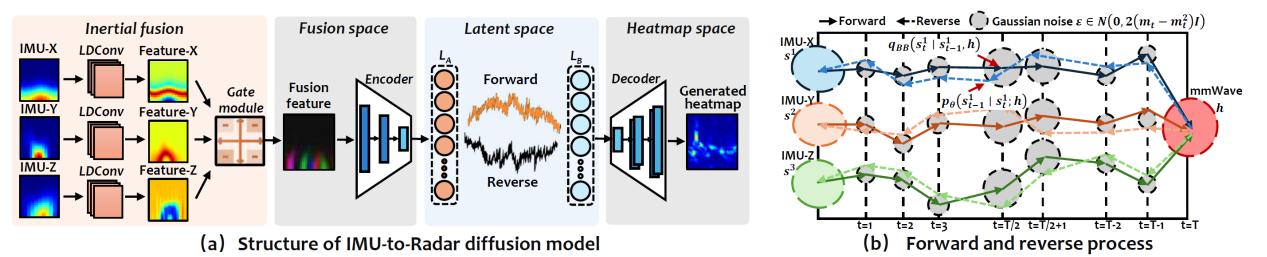




Extracted IMU spectrogram

□ IMU-to-Radar (I2R) diffusion model

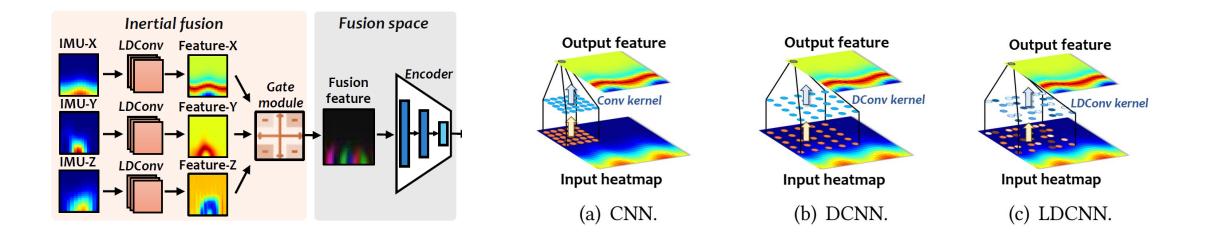
- Bridge diffusion-based translation (Brownian bridge diffusion)
- It offers direct mapping and bidirectional transformation capabilities, enabling efficient and stable conversions



I2R diffusion model.

□ I2R diffusion model

- ✤ 1) Learnable Dilated Convolutional Neural Network (LDCNN)-based feature extraction
- ✤ 2) Gate module for feature fusion

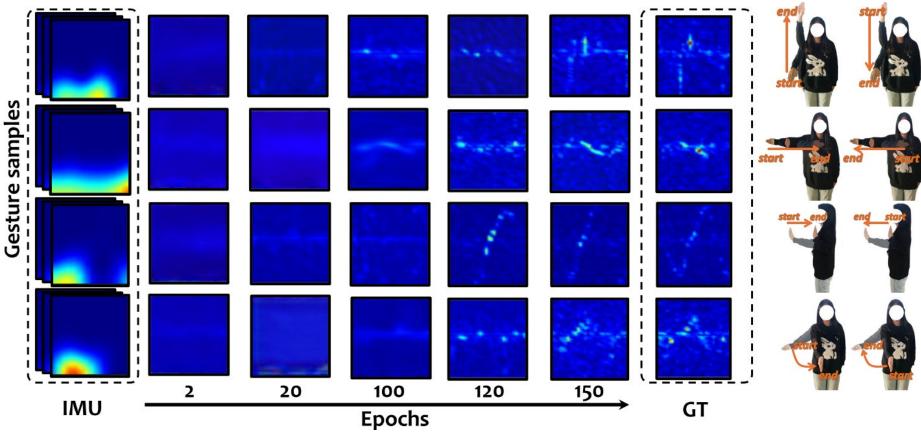


Inertial fusion

Learnable Dilated Convolution

□ I2R diffusion model training progress

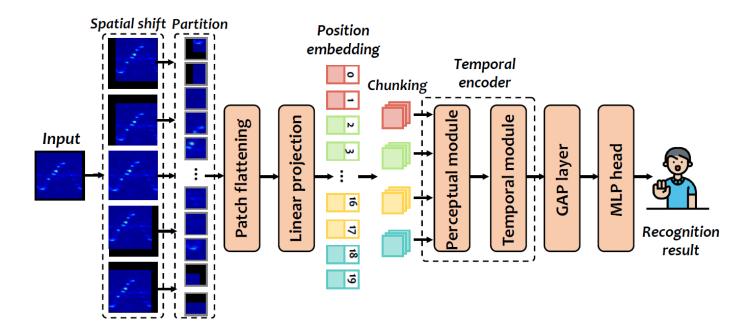
Front raise, lateral-to-front raise, push, and forearm supination



Training progress for various gestures.

Doppler transformer for gesture recognition

- Spatial heatmap shift and patch embedding for enriched representation information
- Temporal attention layer for comprehensive understanding

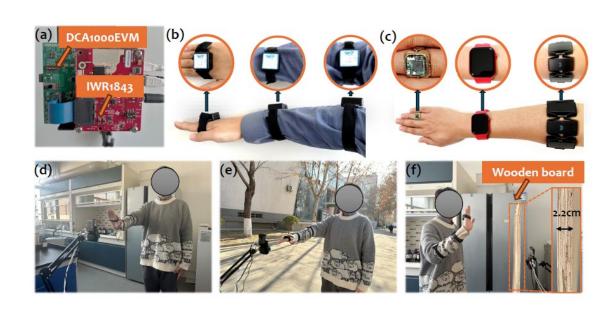


Doppler transformer

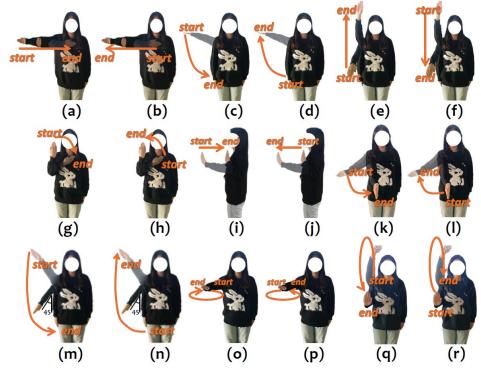
Experimental settings

Data collection

- IWR1843 mmWave radar and different mobile devices
- Indoor, outdoor, and through-wall experiments
- ✤ 18 distinct gestures



Devices and scenarios



Gestures in the dataset.

Experiment results

Overall performance

- The Top-1 accuracy for indoor, outdoor, and through-obstacle are 93.1%, 94.3%, and 89.6%, respectively.
- ✤ Top-3 accuracy values are above 99%.

Comparison with baselines

- Wu et al. (Doppler map-based), mHomeGes (point clouds-based), Nguyen et al. (IMU-based), and Vid2Doppler (video translated mmWave heatmaps).
- iRadar demonstrated comparable performance to state-of-the-art systems.



Conclusion & future work

□ We introduce iRadar, the first mmWave-based gesture recognition system that addresses the key limitations of explicit data collection.

□ Our comprehensive evaluation shows iRadar's exceptional performance, achieving over 99% Top-3 accuracy across diverse scenarios.

□ Future work will be directed towards expanding the application of this system to other use-cases such as human activity analysis.

Thank you!