XGait: Cross-Modal Translation via Deep Generative Sensing for RF-based Gait Recognition

Huanqi Yang¹, Mingda Han², Mingda Jia³, Zehua Sun¹, Pengfei Hu², Yu Zhang⁴, Tao Gu⁴, Weitao Xu¹

¹City University of Hong Kong

²Shandong University

³Xi'an Jiaotong University

⁴Macquarie University

□ Gait-based person recognition

- ✤ A gait is a manner of limb movements made during locomotion (walking).
- Different individuals have different gait patterns.
- ✤ Gait recognition does not require a person to perform any specific active task.

Person gaits

Gaits for different individuals

Gait recognition solutions

- ✤ Video-based solutions require an unobstructed view of the person in good lighting.
- Wearable-based solutions need user to pick up or wear the device on the body.

Camera-based solutions

Wearable-based solutions

Existing Radio Frequency (RF)-based gait recognition

- Versatile and penetrates obstacles, and not affected by lighting conditions.
- Limitation 1 : Deployment of RF devices in the data collection area.
- ✤ Limitation 2 : Users visiting the target area to pre-collect a few instances.

RF sensing-based gait recognition system

Redundant user registration (data collection) process.

Our solution

□ XGait: Cross-Modal Translation via Deep Generative Sensing for RF gait recognition

- Leverage the Inertial Measurement Unit (IMU) signal in modern mobile devices to simulate the RF signals that would be generated if the same person walked near RF devices.
- Eliminate the need for prior RF data collection.

Diversity of RF devices

- ✤ Various RF signals operate at different frequencies and use different modulation methods.
- Consistently extracting and representing essential gait features across different RF signals remains a challenge.

□ Intrinsic difference between IMU and RF signals

Due to the complex nature of human walking patterns, it is difficult to derive corresponding RF data from IMU data using mathematical calculations.

Complexity of gait

- ✤ Gait is the coordinated movement involves 2 phases, 8 events, and 24 body parts.
- Similarity of gait signals among different people further hampers the recognition accuracy.

Feasibility study

Correlation model

- Different gait induce correlated changes in RF and IMU spectrograms.
- There exists a possibility of converting IMU data into RF data through a non-linear function.

□ XGait workflow

✤ 1) User Registration, 2) IMU-to-RF Translation, 3) Gait Recognition.

System overview

□ RF/IMU signal processing and spectrogram generation

- ✤ Maximal Overlap Discrete Wavelet Transform (MODWT) for denoising.
- ✤ Short-Time Fourier Transform (STFT) for spectrogram generation.

□ Spec2Spec generative network for IMU-to-RF translation

- Deformable Convolutional Network (DCN)-based spectrogram fusion.
- Conditional Generative Adversarial Network (cGAN) architecture for translation.

Spec2Spec generative network

□ Spec2Spec neural network for IMU-to-RF translation

- DCN-based spectrogram fusion.
- Spectrogram translation using cGAN architecture.

Illustration of the deformable convolution

Training progress

□ Spectrogram transformer for gait recognition

- Shifted spectrogram patches, patch embedding layer, locality self-attention mechanism.
- Address the data-hungry nature and complex training requirements of conventional transformer models.

Spectrogram transformer

Experimental settings

Data collection

- ✤ Wi-Fi, LoRa, mmWave RF devices and different mobile devices.
- Indoor, outdoor, and through-wall experiments.

Metrics

Top-N accuracy: this measures how frequently the correct user appears within the top N predictions.

Devices

(a) Outdoor registration.

(b) Indoor registration. (c) Outdoor recognition.

(d) Indoor recognition.

(e) Through-wall recognition.

Scenarios

Experiment results

Overall performance

- The Top-1 accuracy for LoRa, Wi-Fi, and mmWave are 96.21%, 92.14%, and 96.97%, respectively.
- ✤ Top-3 accuracy values are above 99%.

Comparison with baselines

- AGait (RF-based), Gait-Watch (IMUbased), and WiFiU (RF-based with explicit features).
- XGait demonstrated comparable performance to state-of-the-art systems.

Conclusion&future work

□ We introduce XGait, the first RF-based gait recognition system that addresses the key limitations of existing RF devices and explicit data collection methods.

Our comprehensive evaluation shows XGait's exceptional performance, achieving over 99% Top-3 accuracy across diverse scenarios.

□ Future work will be directed towards expanding the application of this system to other use-cases such as gait abnormality analysis.

Thank you!