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Background

2/20

Gait-based person recognition 
 A gait is a manner of limb movements made during locomotion (walking).

 Different individuals have different gait patterns.

 Gait recognition does not require a person to perform any specific active task.

Person gaits Gaits for different individuals



Background
Gait recognition solutions 

 Video-based solutions require an unobstructed view of the person in good lighting.

 Wearable-based solutions need user to pick up or wear the device on the body.

Camera-based solutions Wearable-based solutions
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Background
Existing Radio Frequency (RF)-based gait recognition

 Versatile and penetrates obstacles, and not affected by lighting conditions.  

 Limitation 1 : Deployment of RF devices in the data collection area.

 Limitation 2 : Users visiting the target area to pre-collect a few instances.

Redundant user registration (data collection) process.
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RF sensing-based gait recognition system

Identity Confirmed!



Our solution
XGait: Cross-Modal Translation via Deep Generative Sensing for RF gait recognition  

 Leverage the Inertial Measurement Unit (IMU) signal in modern mobile devices to simulate 
the RF signals that would be generated if the same person walked near RF devices.

 Eliminate the need for prior RF data collection.

An application scenario of XGait 5/20



Our solution

XGait

Smartphone

2. RF data generation
 and gait registration

Registration 
completed!

RF transceiver

Identity
confirmed！

Register at anywhere RF sensing-based identification
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Challenges
Diversity of RF devices  

 Various RF signals operate at different frequencies and use different modulation methods. 

 Consistently extracting and representing essential gait features across different RF signals 
remains a challenge.

 Intrinsic difference between IMU and RF signals  
 Due to the complex nature of human walking patterns, it is difficult to derive corresponding 

RF data from IMU data using mathematical calculations.

Complexity of gait  
 Gait is the coordinated movement involves 2 phases, 8 events, and 24 body parts.

 Similarity of gait signals among different people further hampers the recognition accuracy.
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Feasibility study
Correlation model  

 Different gait induce correlated changes in RF and IMU spectrograms.

 There exists a possibility of converting IMU data into RF data through a non-linear function.

Gait cycle and the corresponding spectrograms 8/20



System overview
XGait workflow  

 1) User Registration, 2) IMU-to-RF Translation, 3) Gait Recognition.

System overview
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System design
RF/IMU signal processing and spectrogram generation

 Maximal Overlap Discrete Wavelet Transform  (MODWT) for denoising.

 Short-Time Fourier Transform (STFT) for spectrogram generation.

MODWT decomposition Reconstructed results
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Extracted IMU feature



System design
Spec2Spec generative network for IMU-to-RF translation 

 Deformable Convolutional Network (DCN)-based spectrogram fusion.

 Conditional Generative Adversarial Network (cGAN) architecture for translation.

Spec2Spec generative network 
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System design
Spec2Spec neural network for IMU-to-RF translation 

 DCN-based spectrogram fusion.

 Spectrogram translation using cGAN architecture.

Illustration of the deformable convolution Training progress
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System design
Spectrogram transformer for gait recognition 

 Shifted spectrogram patches, patch embedding layer,  locality self-attention mechanism.

 Address the data-hungry nature and complex training requirements of conventional 
transformer models.

Spectrogram transformer 
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Experimental settings
Data collection

 Wi-Fi, LoRa, mmWave RF devices and different mobile devices.

 Indoor, outdoor, and through-wall experiments.

Devices

Scenarios

Metrics
 Top-N accuracy: this measures how frequently the correct user appears within the 

top N predictions.
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Experiment results

Overall performance

Comparison with baselines

Overall performance
 The Top-1 accuracy for LoRa, Wi-Fi, 

and mmWave are 96.21%, 92.14%, and 
96.97%, respectively. 

 Top-3 accuracy values are above 99%.

Comparison with baselines
 AGait (RF-based), Gait-Watch (IMU-

based), and WiFiU (RF-based with 
explicit features).

 XGait demonstrated comparable 
performance to state-of-the-art 
systems.
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Conclusion&future work
We introduce XGait, the first RF-based gait recognition system that addresses the 

key limitations of existing RF devices and explicit data collection methods.

Our comprehensive evaluation shows XGait's exceptional performance, achieving 
over 99% Top-3 accuracy across diverse scenarios.

Future work will be directed towards expanding the application of this system to 
other use-cases such as gait abnormality analysis.

16/20



Thank you!
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