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Abstract—This paper presents EMGSense, a low-effort self-
supervised domain adaptation framework for sensing applica-
tions based on Electromyography (EMG). EMGSense addresses
one of the fundamental challenges in EMG cross-user sensing—
the significant performance degradation caused by time-varying
biological heterogeneity—in a low-effort (data-efficient and label-
free) manner. To alleviate the burden of data collection and avoid
labor-intensive data annotation, we propose two EMG-specific
data augmentation methods to simulate the EMG signals gener-
ated in various conditions and scope the exploration in label-free
scenarios. We model combating biological heterogeneity-caused
performance degradation as a multi-source domain adaptation
problem that can learn from the diversity among source users
to eliminate EMG heterogeneous biological features. To relearn
the target-user-specific biological features from the unlabeled
data, we integrate advanced self-supervised techniques into a
carefully designed deep neural network (DNN) structure. The
DNN structure can seamlessly perform two training stages that
complement each other to adapt to a new user with satisfactory
performance. Comprehensive evaluations on two sizable datasets
collected from 13 participants indicate that EMGSense achieves
an average accuracy of 91.9% and 81.2% in gesture recognition
and activity recognition, respectively. EMGSense outperforms the
state-of-the-art EMG-oriented domain adaptation approaches by
12.5%–17.4% and achieves a comparable performance with the
one trained in a supervised learning manner.

Index Terms—EMG sensing, biological heterogeneity, domain
adaptation, self-supervised learning.

I. INTRODUCTION

Surface Electromyography (EMG) has been widely used for
the measurement of the electrical activity of a muscle through
positioned surface electrodes on the skin. Due to its portable
and wearable nature, EMG has released a smorgasbord of
intelligent applications, such as neurorehabilitation [1]–[3],
activity recognition [4], [5], gesture recognition [6]–[8], hand
pose reconstruction [9], [10], and virtual reality (VR) [11].

Despite these advances, an overarching challenge in existing
EMG systems is to tackle cross-user scenarios. Existing studies
have demonstrated that EMG signals can be influenced by
various biological factors, such as body fat [12], skin con-
ditions [13] (e.g., moisture [14]), age [15], and fatigue [16].
The heterogeneity of these biological factors across users can
significantly degrade the sensing performance when a new user
uses the systems. Furthermore, the degradation is exaggerated

* Weitao Xu is the corresponding author.
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Fig. 1: EMGSense enables various applications to adapt to
a new user and achieves comparable performance with the
solution based on supervised learning in a low-effort manner.

when the biological factors change over time [13]. For exam-
ple, recent diet patterns can affect users’ body fat percentage.
In addition, modeling an exact mathematical model to extract
the heterogeneity across users is unfeasible because muscle
is a complex fuzzy system [17], and the relationship between
muscle contraction and EMG signal is ambiguous.

We currently have limited options to deal with such cross-
user scenarios. Existing methods either train a model for each
user [6], [18], [19] by collecting abundant data and annotating
it or leverage transfer learning methods [20]–[23] (e.g., fine-
tuning and domain adaptation). However, these methods have
several limitations. On the one hand, although the developer
can train a model for a new user from scratch or fine-tune the
existing model with sizeable labeled data, it introduces high
deployment overhead and human efforts. Moreover, training
a model in a supervised manner cannot adapt to the time-
varying heterogeneity without more labeled data, which is not
a silver bullet to combat the EMG heterogeneity challenges.
On the other hand, domain adaptation (DA) has emerged as a
promising transfer learning technique to solve the performance
degradation problem caused by domain shift. It aims to learn
a model from source domains (e.g., existing users) that can
achieve high performance on a different (but related) target
domain (e.g., a new user). Recent works have attempted to
combat the performance degradation using conventional DA
approaches (e.g., single-source DA) [20]–[22]. However, their
methods ignore that the heterogeneity between the source and
target domains also exists among different source domains,

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-6654-5378-3/23/$31.00 ©2023 IEEE 160

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 P

er
va

siv
e 

Co
m

pu
tin

g 
an

d 
Co

m
m

un
ic

at
io

ns
 (P

er
Co

m
) |

 9
78

-1
-6

65
4-

53
78

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
PE

RC
O

M
56

42
9.

20
23

.1
00

99
16

4



which limits the conventional DA approaches’ performance in
EMG sensing. To tackle this issue, Guo et al. [23] attempted to
leverage the diversity by modeling it as an unsupervised multi-
source domain adaptation problem, but their solution performs
inferior in EMG signal modality (about 51% accuracy in gait
recognition) due to the lack of supervision. The ensemble
of these issues of prior work forms a significant research
gap in EMG sensing—how to train an intelligent model with
satisfactory performance in a low-effort manner to solve the
biological heterogeneity problem in EMG cross-user scenario.

To fill the research gap, we propose EMGSense—a low-
effort self-supervised domain adaptation framework that can
achieve low-effort, high-accuracy EMG sensing for new users.
As Figure 1 shows, EMGSense leverages small-scale unlabeled
data from a new user and the pre-collected data from several
existing users to train a discriminative model to realize intelli-
gent applications for the new user. Note that the pre-collected
data is one-effort labor and can be stored in the cloud to
serve all new users. From the principle aspect, EMGSense lies
at the intersection of domain adaptation and self-supervised
learning, which aims at achieving satisfactory performance
in a low-effort manner by learning from user diversity (i.e.,
heterogeneity) and the latent supervision of unlabeled data.

Instantiating our idea in practice requires that we address
three main challenges. First, the performance of a well-trained
model will degrade as the biological factors change over time.
It is difficult to cope with the time-varying heterogeneity in a
low-effort manner. Second, extracting sufficient homogeneous
biological features to adapt to a new user with acceptable per-
formance is challenging because the biological heterogeneity
in every two users is disparate. Third, to the biological signal
such as EMG, user-specific biological features are indispens-
able components to achieving high performance in single-user
scenarios. However, the difference in user-specific biological
features of different users (i.e., biological heterogeneity) is a
lion in the way to cross-user sensing. It is hard to balance
the generality (for adapting to a new user) and specificity
(for achieving high performance) of the extracted features in
cross-user scenarios. Therefore, extracting suitable features in
different training stages is a vital task.

EMGSense leverages three core techniques to address these
challenges. First, we propose two EMG-specific data aug-
mentation methods to alleviate the burden of data collection.
Additionally, we cope with the time-varying heterogeneity
using unsupervised learning, which also avoids tedious data
annotation. Second, we propose a multi-source domain adap-
tation approach that can eliminate heterogeneous biological
features to solve the EMG domain shift problem by leveraging
the diversity among the source domains. Third, we apply self-
training techniques to relearn target-user-specific biological
features to achieve satisfactory performance on a new user.
The contributions of this paper are summarized as follows:

• EMGSense is the first low-effort AI-empowered frame-
work that leverages the EMG heterogeneity to cope
with the performance degradation caused by inter-user
biological heterogeneity in EMG sensing.

• EMGSense can adapt to new users in a low-effort manner
and resist the performance degradation caused by time-
varying biological heterogeneity by combing two EMG-
specific data augmentation and label-free scenarios.

• EMGSense can seamlessly perform two training stages
without modifying any DNN structures. The two training
stages can eliminate the heterogeneity features to adapt to
a new user and relearn the target-user-specific biological
features to achieve a performance that is comparable with
the model trained in a supervised learning manner.

• We validate EMGSense on two sizable EMG datasets
(9,898 gestures and 171min activities) collected from 13
participants. The result shows that EMGSense achieves an
average accuracy of 86.6% in new users and outperforms
the state-of-the-art approaches by 12.5%–17.4%.

The rest of the paper is organized as follows. We first
present an overview of EMGSense in Section II. Then, we
specify the signal processing and augmentation in Section III,
and elaborate the design of EMGSense in Section IV. We
evaluate the performance of EMGSense in Section V. Finally,
we discuss related work in Section VI before concluding the
paper in Section VII.

II. FRAMEWORK OVERVIEW

This paper considers the scenarios where a model developer
has pre-collected a labeled dataset from several existing users
(i.e., source domains). The goal of EMGSense is to learn a
high-performance model for a new user (i.e., target domain)
in a low-effort (label-free and data-efficient) manner. Figure 2
illustrates the training process of EMGSense, which consists of
two stages: a pre-training stage and a self-training stage. The
pre-training stage aims to adapt to a new user by eliminat-
ing the user-specific biological features, and the self-training
stage aims to achieve high performance on the new user by
relearning the user-specific biological features.
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Fig. 2: Framework overview.

Pre-training stage. The pre-training stage aims to initialize
a model that can take advantage of the diversity among
existing users. To this end, we formulate this stage as a multi-
source domain adaptation problem. The pre-training process is
shown in the upper figure of Figure 2, during which the labeled
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source dataset and the unlabeled target dataset are processed
and fed into a multi-source domain adaptation DNN which
aims to learn a moderate-performance model for a new user.

Self-training stage. The self-training stage is proposed to
boost the model trained from the pre-training stage to a high-
performance model for the new user. The self-training process
is shown in the lower figure of Figure 2. We first conduct data
augmentation to mitigate the shortage of the target samples
and increase the robustness of the trained model. Then, we
use the model trained in the previous stage to infer the
augmented target samples, and the predictions are used as the
initial pseudo-labels. This process is represented as “Pseudo-
labeling” in Figure 2. Subsequently, we select the clean
instances and corresponding pseudo-labels using a small-loss
strategy. The selected instances and pseudo-labels are used to
supervise the self-training process, which is performed by the
multi-model voting ensemble DNN (the initial parameters are
inherited from the pre-training stage, detailed in later sections).
Then, we use the improved model to re-infer the augmented
target data to reduce the noise (errors) in pseudo-labels. By
alternately updating the model parameters and pseudo-labels,
the pre-trained model will be boosted to be a high-performance
model for the new user.

In a nutshell, EMGSense achieves low-effort, high-accuracy
EMG sensing in cross-user scenarios. The design details of the
framework are elaborated below. Without loss of generality,
we use a Myo armband [24] with eight EMG channels as the
hardware to illustrate the design details.

III. SIGNAL PROCESSING & DATA AUGMENTATION

A. Signal Processing

We first apply a high-pass Butterworth filter with a cut-
off frequency 30Hz on the raw EMG signal to filter out
the low-frequency noise. Then, we leverage the threshold-
based method [25] to segment the active periods when the
user performs gestures/activities. Specifically, we first sum
the signals from the eight EMG channels together. Then, we
normalize the magnitude of summed EMG signals and apply
a 0.1 s sliding window on the summed signals to calculate the
standard deviation of each window. After this step, we filter out
the segments with a standard deviation lower than a predefined
threshold of 0.02. Finally, we can effectively detect and
segment the periods when the user performs gestures/activities.

0 0.5 1 1.5 2 2.5
Time (s)

-20

-10

0

10

20

A
m

pl
itu

de

Raw signal
Augmented signal

(a) Speed-intensity augmentation

0.8 1 1.2 1.4 1.6 1.8
Time (s)

-40

-20

0

20

40

A
m

pl
itu

de

Raw signal
Augmented signal

(b) Local variation augmentation

Fig. 3: Examples of the proposed augmentation methods:
(a) a simulated low-speed signal with lower intensity; (b) a
simulated signal’s active period with local variations.

B. Data augmentation for EMG

Collecting a large amount of data from different users is
labor-intensive. Therefore, we design two data augmentation
methods to increase the diversity of training data and im-
prove the model generalization ability and avoid overfitting.
We proposed a data augmentation module that mimics the
perturbations in EMG signals, which are elaborated below.

Speed-intensity augmentation. As stated in [26], the in-
tensity of the muscle contraction affects the amplitude of the
EMG signal, and the speed of the motion affects the length
of the EMG signal. The first augmentation method is defined
as Y = αf(X;β) to simulate EMG signals with different
intensities and speeds, where α is a coefficient that changes
the amplitude of the raw signal, which simulates the effect of
performing the same gesture/activity with different intensities.
f(X;β) is a function that re-samples the original EMG signal
X with a re-sample rate β, which is used to simulate the
process that a user may perform the same gesture/activity
with varying speeds. Here, α and β are drawn randomly from
[0.5, 1.5] and [0.8, 1.2], respectively. Figure 3(a) shows an
example of augmented signals. We can see that the proposed
speed-intensity augmentation can synthesize signals with dif-
ferent speeds and intensities, which allows EMGSense to
obtain better generalization capability.

Local variation augmentation. The above method can
simulate the effect of different speeds and intensities on
the whole EMG signal. However, since a gesture can be
decomposed into several sub-gestures [27], it is difficult to
ensure the speeds and intensities are always the same for
each sub-gesture because of the diversity in user’s behaviors.
Therefore, we propose another augmentation method that can
increase input robustness by simulating randomness (the local
changes of speed and intensity) in usage scenarios.

To simulate the local changes of intensity, we first ran-
domly select LX

3 indices from [1, LX ] which are denoted by
I = [i1, i2, . . . , iLX

3

]. Then, we randomly select LX

3 points
from a normal distribution N (1, 0.1), which are denoted by
S = [s1, s2, . . . , sLX

3

]. Then, we use the previously generated
random points S and indices I to fit a warping curve g, and cal-
culate the corresponding values G = [g(1), g(2), . . . , g(LX)].
Finally, the EMG signal values are multiplied with the corre-
sponding G values in point-wise manner, namely,

X → Xa = [x1 · g(1), x2 · g(2), . . . , xLX
· g(LX)] . (1)

Since S follows normal distribution, it can ensure that only
the amplitude of a small portion of points is changed greatly
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Fig. 4: G and G̃ are the coefficients that fluctuate around 1.
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while the amplitude of most points is changed slightly.
To simulate the local changes of speed, we first calculate

the cumulative sum G̃ of G as follows:

G̃ =

[
1∑

n=1

g(n),

2∑
n=1

g(n), . . . ,

LX∑
n=1

g(n)

]
. (2)

As Figure 4 shows, both G and G̃ are time series fluctuated
around 1. Then, we tune the raw indices with G̃ in an element-
wise manner and reorder (represented as Function: sort) them
to obtain the new indices:

I ′ = sort

([
1 ·

1∑
n=1

g(n), 2 ·
2∑

n=1

g(n), . . . , LX ·
LX∑
n=1

g(n)

])
.

(3)
We use shifted indices I ′ and magnitude-warped values Xa

to fit a new time-warping curve function h. Then, we use the
function h to calculate the augmented signal. Figure 3(b) pro-
vides an example of the augmented signal. As the evaluation
in Section V-D, the proposed two data augmentation methods
can significantly improve EMG sensing accuracy.

IV. FRAMEWORK DESIGN

In this section, we describe the details of the EMGSense
framework design. The core of the EMGSense framework
is a well-designed DNN, which consists of a common fea-
ture extractor, N domain-specific feature extractors, and N
domain-specific classifiers, where N denotes the number of
source domains. Each domain-specific feature extractor and
the corresponding classifier are combined with the common
feature extractor to form a branch.
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Fig. 5: Venn diagram illustrates the principle of EMGSense.

The principle behind this design is the shared common
feature extractor aims to ensure the transferability of shallow
features. Meanwhile, combinations of domain-specific feature
extractors and classifiers are responsible for independently
exploring the diversity among the deep features from different
source domains. As Figure 5 shows, by eliminating user-
specific biological features (e.g., body fat percentage, skin
conditions) in extracted deep features, each branch can learn
some homogeneous biological features (e.g., myoarchitecture,
contracted muscle group) to adapt to the target domain (i.e., a
new user) from the corresponding source domain. By ensem-
bling the homogeneous biological features, the model obtains a
moderate capability to predict the new user’s data, and we can
leverage the predictions as pseudo-labels. After purifying the
pseudo-labels, the cleaner supervision will force the model to
relearn the target-user-specific biological features and improve
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Fig. 6: EMGSense training workflow.

the model performance on the new user. Specifically, the
EMGSense seamlessly conducts two training stages elaborated
below—a pre-training stage and a self-training stage, without
modifying any DNN structure.

A. Pre-training Stage

1) Design Rationale: Recall in Section II that the goal of
the pre-training stage is to train a model that can adapt to
a new user with moderate performance as the initialization
of the self-training stage. To this end, we treat the samples
from N existing users as N independent source domains and
combine each existing user and the target user as a subset.
As the left part of Figure 6 shows, EMGSense minimizes
a classification loss and a pre-defined discrepancy loss to
learn the homogeneous biological features from each subset.
Meanwhile, EMGSense maximizes the domain loss calculated
by a domain discriminator [28] to confuse the features from
different existing users and force the DNN to learn more gen-
eral features by eliminating heterogeneous biological features.

2) Problem Formulation: The objective function of the pre-
training stage consists of three kinds of losses: classification
loss LC

τ from the source domains, discrepancy loss Ldis
τ

between the source domains and target domain, domain loss
LD among source domains. The pre-training stage aims to
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solve the following optimization problem:

γ =
2

1 + exp(−100∗I
IMAX

)
− 1, (4)

min
θF ,θHτ ,θCτ

max
θD

N∑
τ=1

LC
τ (θF , θHτ

, θCτ
)

+ γ
(
Ldis
τ (θF , θHτ )− LD(θF , θHτ , θD)

)
, (5)

where I is the number of iterations, IMax is the max number
of iterations. θF , θHτ , θCτ , θD denote the parameters of the
common feature extractor, domain-specific feature extractors,
domain-specific classifiers, and domain discriminator, respec-
tively. τ ∈ [1, . . . , N ] is the corner marker that represents the
serial number of a source domain, and γ denotes the trade-off
parameter for Ldis

τ and LD.

3) Design Details: After using the processing method de-
scribed in Section III, the processed EMG signal X will be
used as input directly. First, we employ a common feature ex-
tractor (two-layer stacked 1D-CNNs) to extract channel-wise
spatial features. Both CNN layers use 1×10 1D filters with a
stride length of 1×2. Then, we add a batch normalization layer
after each CNN layer to normalize the inputs and accelerate
convergence by reducing internal covariate shift [29]. The
extracted features are sliced into eight segments and fed into a
domain-specific feature extractor (two-layer stacked LSTMs)
to extract temporal features. The hidden sizes of the two LSTM
layers are 512 and 128, respectively. Overall, the extracted
domain-specific features fτ through the feature extraction
function Gfτ can be represented as follows:

fτ = Gfτ (X) = LSTM
(
CNN(X)

)
. (6)

The extracted features fτ are fed into a domain-specific classi-
fier (three fully connected layer stacked) to learn a prediction
function Gyτ

: fτ → [0, 1]K that is parameterized by θCτ
:

Gyτ
(fτ ; θCτ

) = softmax
(
Gfτ (X); θCτ

)
, (7)

where K is the number of classes. We use ReLU activation
function and define the cross-entropy loss function as follows:

LC = −
N∑

τ=1

L∑
j=1

K∑
i=1

lijτ log (pijτ ) , (8)

where lijτ is the truth label, pijτ is the softmax probability
of the i-th class in j-th sample from the τ -th source user, and
L is the batch size. The loss LC

τ will be optimized to achieve
high accuracy in single-user (an existing user) scenarios rather
than cross-user scenarios. To adapt to the new user, we apply
two transfer learning techniques elaborated as follows:

First, we employ Multi-kernel Maximum Mean Discrepancy
(MK-MMD) [30] to align the source and target distributions
in deep feature space, which aims to learn groups of biological
homogeneity features from different subsets. Specifically, we
compress the source probability distribution pSτ and target
probability distribution pTτ into a reproducing kernel Hilbert

space H by using Gaussian kernels. Then, we define the
discrepancy loss Ldis

τ as:

Ldis =

N∑
τ=1

MMD(pSτ , p
T
τ ,H) =

N∑
τ=1

∥µS
τ − µT

τ ∥H, (9)

where µS
τ and µT

τ are the unbiased estimation of expectation
EpS

τ
[fS

τ ] and EpT
τ
[fT

τ ] (i.e., mean value). Since each group of
homogeneity features enables distinguishing the target data,
the ensemble of these groups will contribute to the following
training stage by using the voting ensemble structure.

Second, we apply adversarial training to confuse the features
from different source domains. Specifically, we add a domain
discriminator D with a Gradient Reversal Layer (GRL) [28]
before the fully connected layers so that it can reverse the
optimization direction. The domain loss LD is defined as:

LD = −
L∑

j=1

N∑
τ=1

ldτj log
(
pdτj

)
, (10)

where pdτj is the domain prediction, ldτj is the domain label of
source sample XSτ

j , L is the batch size. To achieve maximum
confusion, the DNN discards the heterogeneous biological
features and keeps the homogeneous biological features.

By optimizing the ensemble loss L = LC + γ(Ldis −LD),
the trained model can achieve adaptation performance as
envisaged in Section IV-A1.

B. Self-training Stage
1) Design Rationale: The model trained in the pre-training

stage has moderate performance in adapting to a new user. Al-
though the model’s performance cannot meet the requirements
of practical application, we can explore the latent supervision
based on this model. The self-training stage aims to boost the
model performance trained from the pre-training stage.

To this end, we purify the pseudo-labels obtained from
the pre-training stage and use cleaner supervision to relearn
the target-user-specific biological features removed during the
heterogeneity-eliminating process. Specifically, we use the pre-
dictions from the pre-training stage as the initial pseudo-labels.
This process is denoted as “Projection” in Figure 6. Since
the target-user-specific biological features were eliminated
during the heterogeneity-eliminating process and only a few
homogeneous biological features are available, the model’s
performance on the target user is imperfect. Furthermore,
noise (errors) in these pseudo-labels will further deteriorate
the training process. To tackle this issue, we use the ensemble
of homogeneous biological features from different branches to
predict the final predictions, which can reduce the noise in the
predictions. Moreover, we propose a clean instances selection
strategy to further reduce the error rate in pseudo-labels and
obtain cleaner supervision. By continuously purifying the
pseudo-labels and relearning the target-user-specific biological
features, the model will achieve satisfactory performance on
the new user.

2) Problem Formulation: We first use the ensemble out-
puts predicted by the multi-model voting ensemble DNN as
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Algorithm 1 Self-training process.
Require: Rmax: maximum repetition number; Imax: maximum
iteration number; Ik: iteration constant; θ: DNN parameters; DT :
target dataset.

for R = 1, 2, 3, . . . , Rmax do
Shuffle DT ;
for I = 1, 2, 3, . . . , Imax do

Update dynamic ratio R(I) = 1−min
{

I
Ik
λ, λ

}
;

Fetch mini-batch BT from DT ;
Select R(I) ratio clean instances from BT ;
Train θ with clean instances and pseudo-labels;

end for

Update pseudo-labels to reduce noise;
end for

pseudo-labels. Then, we sample small-loss instances to train
the DNN under the supervision of corresponding pseudo-
labels. By updating the pseudo-labels and the parameter of
the multi-model voting ensemble DNN alternately, the noise
in pseudo-labels will be reduced. To summarise, the problem
to solve in the self-training stage can be formulated as:

P (y = j | x) =
N∑

τ=1

ef
⊤
τ wτj+bτj∑K

k=1 e
f⊤
τ wτk+bτk

/N, (11)

min
θF ,θHτ ,θCτ

N∑
τ=1

LC
τ (θF , θHτ

, θCτ
), (12)

where P (y = j | x) denotes the probability of sample x
belonging to class j ∈ {1, 2, . . . ,K}. Moreover, fτ denotes
the deep features of the sample x extracted by common and
τ -th domain-specific feature extractors. wτ and bτ denote the
τ -th domain-specific classifier’s mapping relationships from
feature fτ to prediction.

3) Design Details: There are many techniques to learn
from noisy supervision, such as (1) adding a noise adaptation
layer [31]; (2) leveraging an additional validation dataset
[32]; (3) assigning weights for the training samples [33]; (4)
training a label cleaning network with a part of clean instances
and use the network to reduce the noise in labels [34]; (5)
proposing a joint optimization framework [33]. However, to
our knowledge, no attempt has been made to boost the multi-
source domain adaptation performance by purifying the noisy
pseudo-labels in EMG sensing.

In EMGSense, we combine techniques (4) and (5) men-
tioned above. Specifically, we calculate the target samples’
average loss of all branches and select the small-loss instances
as the clean instances to train the multi-model voting ensemble
DNN. It is because training with small-loss instances instead
of all instances improves network performance when learning
from noisy supervision [34]. However, there is a founda-
tional problem. Although the small-loss instances have more
likelihood of being clean instances, the small-loss instances
always belong to the same class or few classes because of the
preference of the network. The severe imbalance will greatly
corrupt the self-training process. To tackle this problem, we
select small-loss instances from each class based on a dynamic

TABLE I: Gestures and activities we considered in this work.

Dataset Categories Volume

Gesture Clap, OK, Snap, Double-tap,
Wave-in, and Wave-out [7] 9,898 samples

Activity Waving, Writing, Typing, Sitting,
Running, Applauding, and Boxing 171min

ratio R(I). Specifically, the dynamic ratio R(I) is calculated
according to the iteration number as follows:

R(I) = 1−min

{
I

Ik
λ, λ

}
, (13)

where I is the number of iterations, Ik denotes a constant to
restrain the minimum value of R(I), and 1 − λ denotes the
minimum ratio selected from each class. The details of the
self-training stage are shown in Algorithm 1.

V. EVALUATION

A. Experimental Settings

1) Data Collection: As shown in Figure 7, we leverage the
Myo armband which is composed of eight EMG dry sensors
for the data collection. The eight sensors measure the action
potential of the muscles at a sampling rate of 200Hz.

To evaluate the performance of EMGSense in different EMG
cross-user applications, we collected two datasets: a gesture
recognition dataset and an activity recognition dataset. Details
of the six gestures and seven activities we considered are
shown in Table I. A total of 13 healthy volunteers (seven males
and six females, aged between 22 and 35, all right-handed)
participated in the data collection1. As shown in Figure 7, we
collected data from three deployment locations at a subject’s
forearm, with a distance of 5 cm. For each location, we also
collected data from three orientations, i.e., 0°, 15°, and 30°.
The 0° orientation is defined as the orientation that makes the
blue light bar align with the palm of the subject. Since the Myo
Armband’s eight electrodes are evenly distributed at 360°, the
angle between the two adjacent electrodes is 45°. That is, if
we rotate the armband by 45°, the electrodes will move to
their neighbors’ positions, and hence the same EMG signals

Location 1

Location 2

Location 3

(a) Deployment locations

0° 15°
30°

(b) Wearing orientations

Fig. 7: Different locations and orientations of MYO Armband.

1The study has been approved by our institutional human ethics commit-
tee (No. H002554).
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will be recorded. Therefore, we only collected data when the
armband is rotated clockwise by 0°, 15° and 30°, respectively.

2) Settings: We implement EMGSense using the Pytorch
framework and train the neural network on a desktop with
Nvidia GTX 2080Ti GPU. We adopt the adaptive momentum
(Adam) to optimize the model’s parameters, and the learning
rate of the optimizer is 0.001. The batch sizes are 32 and 256
in the pre-training and self-training stages, respectively. The
early stop criterion of the pre-training and self-training stages
are 500 and 50 iterations, respectively.

Considering the data collected from different positions, we
define the combination of a deployment location and a wearing
orientation as a sub-domain. Correspondingly, each user has
nine sub-domains (3 locations×3 orientations). For evaluating
the performance of EMGSense, we define N as the number of
source users. Among each user, we define Nsub as the number
of sub-domains used for training, which indicates how many
sub-domains are required to achieve satisfactory performance.
Furthermore, we define Ptrain as the ratio between training
data and all data in each sub-domain, which indicates how
many samples are required to collect for each sub-domain.

In this paper, we conduct the evaluations in a leave-one-out
manner by selecting one user as the target domain while the
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Fig. 9: Confusion matrices on two EMG sensing tasks.

rest users are used as source domains until all the volunteers
have been selected as the target domain once. To eliminate
random effects, the sub-domains and samples are randomly
selected ten times for each setting. The average performance is
calculated as the final result. We use Accuracy, Confusion Ma-
trix, Precision, Recall, and F1-Score as the evaluation metrics
that comprehensively evaluate the EMGSense’s performance.

B. Overall Performance
Since EMGSense is a low-effort self-supervised domain

adaptation framework working in a data-efficient manner, we
evaluate the overall performance of EMGSense on whole
collected datasets. The results are shown in Figure 8. To
intuitively demonstrate the efficiency of EMGSense, we also
conduct the comparison with the performance achieved by
w/o adaptation and fully supervised learning as two different
masks in Figure 8. Here, the w/o adaptation mask indicates
the inferior overall performance when directly inferring target
domain samples using the model trained from source domains;
the fully supervised mask indicates the performance upper
bound that can be achieved on the collected datasets. The result
shows that EMGSense model can achieve 91.9% accuracy
(92.5% precision) and 81.2% accuracy (82.2% precision) in
gesture recognition and activity recognition, respectively. Note
that the performance is close to the model trained in a fully
supervised manner by 3.5–5.5% below the latter.

Figures 9(a) and 9(b) show confusion matrix examples of
EMGSense on gesture recognition and activity recognition,
respectively. It can be observed that there is no significant
difference in the accuracy of different gestures and activities,
indicating the robustness of EMGSense in different tasks.

C. Micro-benchmark Tests
1) Impact of Source Domain Number: Since the core of

EMGSense is the multi-source domain adaptation and multi-
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model voting ensemble structure, the number of source do-
mains is a vital factor affecting the system performance.
Intuitively, the more source domains help the model adapt to a
target domain, the better performance the model can achieve.
Therefore, we first evaluate the engagement of the number of
source domains (users) with the system’s accuracy.

Setup: Since the experiment aims to evaluate the influence
of source domain number, we fix Ptrain and Nsub as 70%
(15% for validation, 15% for testing) and 9, respectively. Then,
we increase N from 1 to 4 gradually.

Results: As Figure 10 shows, the classification accuracy
of EMGSense increases gradually with the increment of N .
It demonstrates that owing to the multi-source and multi-
model voting ensemble structure, EMGSense can achieve
better performance by increasing the diversity of the source
domains.

2) Impact of Source Domain Size: Since EMGSense is
based on multi-source domain adaptation, the size of source
domains plays an important role in the system performance.
Intuitively, the more training data are collected from different
combinations of locations and orientations, the higher accuracy
a system can achieve. However, collecting large amounts of
data is labor-intensive and time-consuming. Therefore, we fix
the number of source domains and further evaluate the impact
of source domain size on the system’s accuracy.

Setup: Since the experiment aims to go deep into the
domain size, we fix N as the maximum optional value for
each dataset. When evaluating Nsub, we fix Ptrain as 70%
(15% for validation, 15% for testing) and change Nsub from
1 to 9 gradually. Similarly, when evaluating Ptrain, we fix
Nsub as 9 and change Ptrain from 10% to 70% gradually.

Results: Intuitively, as Figures 11 and 12 show, the classi-
fication accuracy of EMGSense increases gradually with the
increment of Nsub and Ptrain. Specifically, the accuracy of
gesture recognition and activity recognition increases from
76.8% to 91.9% and from 60.7% to 81.2% when Nsub

increases from 1 to 9. The same pattern can also be observed
when Ptrain increases from 10% to 70%.

3) Impact of Time-varying Biological Heterogeneity: Since
EMGSense is designed for label-free training scenarios, it
leaves the potential to optimize the model by leveraging the
unlabeled data generated during the using period. Intuitively,
as discussed in Section I, the sensing accuracy will degrade
as the biological heterogeneity changes over time. Therefore,
we evaluate the EMGSense’s long-term sensing performance
on new users in this part.

Setup: Since the experiment aims to track the models’ long-
term performance on a new user, we start from the models
trained in Section V-B. Then, we test the model accuracy
on the new user every fifteen days, lasting for two months.
During this period, we let the user use the EMG armband
for ten minutes every five days. By leveraging the recorded
unlabeled data to optimize the model, we compare the long-
term accuracy of a supervised learning model and EMGSense
model to demonstrate the EMGSense’s capability to cope with
the time-varying biological heterogeneity.

Results: As Figures 13 and 14 show, the test accuracy of
the supervised learning model will decrease with a tendency
to fall back to the “w/o adaptation” performance in Figure 8.
The reason is that the biological factors of the subject have
changed significantly over a long enough period. Therefore,
the subject is equal to a new user for the supervised learning
model. In contrast, the EMGSense model performs robustly to
cope with time-varying biological heterogeneity by optimizing
the model using unlabeled data generated during use.

D. Ablation Study

Below, we evaluate the efficacy of each system module in
EMGSense. Specifically, we design five different variants of
EMGSense by adding different functional modules into the
end-to-end system design. Then, we can analyze the impact
of different modules in gesture recognition as an example
to evaluate the efficacy of each system module in Figure 6.
In this experiment, Nsub and Ptrain are set to 6 and 30%,
respectively. The five variants of EMGSense are listed below:
(1) EMGSense-Adv: a simplified design of EMGSense,

which conducts the proposed pre-training stage but only
optimizes the classification loss and domain loss.

(2) EMGSense-Dis: a simplified design of EMGSense,
which conducts the proposed pre-training stage but only
optimizes the classification loss and discrepancy loss.

(3) EMGSense-Basic: the basic design of EMGSense, which
conducts the proposed pre-training stage and optimizes
the classification loss, domain loss, and discrepancy loss.

(4) EMGSense-SelfTra: an upgraded version of EMGSense-
Basic, which conducts the proposed two training stages.

(5) EMGSense-Aug-SelfTra: over EMGSense-SelfTra, this
version further applies data augmentation methods pro-
posed in Section III-B to improve the performance of
EMGSense-SelfTra. We apply each of the two data aug-
mentation methods four times in this system variant.

The results are shown in Figure 15. Firstly, the comparison
among the first two variants (1) and (3) indicates the efficacy
of the MK-MMD for aligning the source and target features
in deep feature space. Secondly, the accuracy of variants (2)
and (3) demonstrate that the domain discriminator can force
the DNN to learn more general features and improve the gen-
eralization capability. Variant (4) indicates that the proposed
self-training stage can cooperate well with the pre-training
stage and achieve better performance. Finally, by adding data
augmentation to the end-to-end system design, variant (5) can
significantly increase the diversity of the training data and can
improve the model generalization ability.

E. Comparison with Baselines

1) Baselines: We evaluate EMGSense on the collected
dataset with three baselines: without adaptation (denoted by
w/o adaptation in the rest of the paper), DANN [28] and
MCDCD [23]. Here, w/o adaptation means that we use the
model trained from source domains to infer the target domain
samples directly (recall Section V-B). DANN is a classical
domain adaptation approach based on adversarial training.

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)

167



0 500 1000 1500 2000
Iteration

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 lo
ss

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

0.7554

Classification loss
Discrepancy loss
Domain loss
Ensemble loss
Test accuracy

Fig. 17: An example of training losses and the test accuracy
of the trained model during the pre-training stage.

MCDCD is a multi-source discrepancy-based domain adapta-
tion approach for EMG-based gait detection. For fairness, we
employ the same DNN units used in EMGSense as the feature
extractors and classifiers in baselines. In this experiment, we
adopt the same parameter setting as the one in Section V-D.

2) Result: As the results in Figure 16, EMGSense achieves
an overall accuracy of 84.6% in gesture recognition and 67.5%
in activity recognition, respectively. Moreover, EMGSense out-
performs the existing approaches by 12.5%–17.4%. The result
of w/o adaptation is the lowest, demonstrating the significant
accuracy degradation caused by user heterogeneity. Addition-
ally, the classical domain adaptation approach (e.g., DANN)
and the EMG-oriented solution (e.g., MCDCD) cannot achieve
satisfactory results for the following three reasons.

• First, DANN and MCDCD rely on large amounts of data
to achieve high performance. However, their performance
drops significantly when the number of source domains
and the available training data is limited.

• Second, they ignore the heterogeneity among source users
and treat all data equally. As a result, some hard-to-
transfer samples may not be well treated, leading to in-
ferior performance. However, intrinsic forearm biological
factors diversity among different users leads to different
domain alignment potentials. Unfortunately, this fact is
ignored in existing methods.

• Third, for the same training conditions, the model learned
in a supervised manner usually outperforms the one
learned in an unsupervised manner. Therefore, how to
take full advantage of the unlabeled samples becomes
challenging when only unlabeled samples are available.
Unfortunately, both DANN and MCDCD fail to explore
latent supervision in unlabeled samples.

In contrast to the baselines, we design two EMG-specific
data augmentation approaches to increase the variation of
EMG signals and reduce the burden of data collection. Fur-
thermore, we formulate the problem as a multi-source domain
adaptation problem (the pre-training stage) to leverage the
diversity of different subjects. Moreover, we innovatively use
self-training techniques (the self-training stage) to explore the
latent supervision of unlabeled target samples. The efficacy of
the two stages will be evaluated in the next subsection.

F. Pre-training efficacy & Self-training efficacy
Figure 17 shows that the classification loss and the dis-

crepancy loss continuously decline with the increment of
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Fig. 18: The clean instances selection strategy boosts the test
accuracy during three rounds of the self-training stage.

iterations, which means the target data is separately aligned
to each source data. At the same time, the features of each
class are separated from each other in the deep feature space.
Contrastively, the domain loss increases rapidly and keeps at
the maximum value until the end of the pre-training stage.
It indicates that the domain discriminator maximizes the
confusion among different source domains, forcing the feature
extractors to learn more general features. As a result, the
ensemble loss defined in Equation 5 declines smoothly to
the minimum value while the test accuracy (i.e., the model
performance) rises and trends toward stability. Ultimately, the
performance obtained in the pre-training stage will be used as
the initialization for the self-training stage.

Figure 18 shows the efficacy of the self-training stage.
Specifically, the accuracies of each batch of pseudo-labels
before clean instances selection and after selection are shown
as the blue line and the red line in Figure 18. It can be
observed that the self-training strategy can boost the model
to outperform the initial supervision. Three rounds of the
self-training stage with an early stop setting are separated
by the yellow dashed lines. When each round of the self-
training stage stops, the improved model (black line) will be
used to initialize the next round’s pseudo-labels (blue line)
until the improvement is less than a pre-defined threshold. As
a result, EMGSense achieves a satisfactory performance by
combining the proposed augmentation methods, multi-source
domain adaptation approach, and self-training strategy.

VI. RELATED WORK

EMG-based sensing. EMG-based sensing has attracted
considerable attention in recent years. A variety of novel
applications have been proposed, such as authentication [35],
activity recognition [4], gesture recognition [6], [7], and hand
pose reconstruction [9], [10]. Specifically, Xi et al. [4] pro-
posed a system to identify six activities by wavelet coherence
coefficient features and the support vector machine classifier.
Zhang et al. [7] designed a gesture recognition system based
on an artificial neural network, achieving 98.7% accuracy in
classifying five gestures. Additionally, EMG sensors offer rich
information for fine-grained hand pose sensing. For example,
Liu et al. proposed a system called WR-hand to track 14 skele-
tal points on the hand [9]. Another group of researchers [10]
designed a system named NeuroPose to track finger poses.

Domain adaptation. Domain adaptation is a subcategory
of transfer learning whose goal is to train a model on a source
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dataset and secure a good accuracy on the target dataset,
which is significantly different from the source dataset. It
has been widely used to solve the domain shift problem
in sensing systems, such as wireless sensing [36]–[38] and
wearable sensing [39], [40]. Several attempts have been made
to solve the domain shift problem in EMG-based sensing.
For example, Côté-Allard et al. [21] proposed a supervised
domain adaptation framework for EMG-based hand gesture
recognition. The supervised method is further extended to
be unsupervised in their recent work [22]. Guo et al. [23]
proposed a discrepancy-based approach that leverages the
diversity from multiple source domains to adapt to new users.

Different from existing wearable sensor-based solutions,
EMGSense is a low-effort domain adaptation framework based
on EMG-specific data augmentation methods, a multi-source
domain adaptation approach, and a self-training strategy. It can
leverage the diversity among source domains and the latent
supervision from the target domain. Evaluation results show
EMGSense outperforms existing approaches significantly in
two common EMG-based application scenarios.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a low-effort self-supervised domain
adaptation framework to cope with the heterogeneity chal-
lenges in a low-effort (data-efficient and label-free) manner.
By integrating the proposed EMG-specific data augmentation
methods, the well-designed DNN structure, and the advanced
self-supervised techniques, the proposed two training stages
can complement each other and train a model which can be
adapted to a new user. The model achieves a satisfactory
performance close to the model trained in a fully supervised
manner and is only 3.5–5.5% below the latter. Comprehensive
evaluations indicate that EMGSense achieves an average accu-
racy of 86.6% in two cross-user EMG sensing applications and
outperforms the state-of-the-art EMG-oriented approaches by
12.5%–17.4%. EMGSense fills the research gap in heterogene-
ity problems in EMG sensing and will enable a variety of novel
EMG-based cross-user applications, such as clinical practice,
neurorehabilitation, and human-machine interaction. Future
work could research promising topics such as synthesizing
EMG signal according to the heterogeneity or generalizing the
EMG signal across users, which means the extracted feature
can be applied to new users in a zero-effort manner.
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