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ABSTRACT

In recent years, the deployment of unmanned vehicle delivery ser-
vices has increased unprecedentedly, leading to a need for enhanced
security due to the risk of leaving high-value packages to an unau-
thorized third party during pickup or delivery. Existing authentica-
tion methods such as QR code and one-time password are inade-
quate, as they are susceptible to attacks and provide only one-way
authentication. This paper, for the first time to our best knowledge,
proposes Wave-for-Safe (W4S) — a novel mutual authentication
system that utilizes multi-modal sensors on both the user’s smart-
phone and the unmanned vehicle. W4S uses random hand-waving
by the legitimate user to achieve robust authentication by obtaining
highly correlated sensory data measured by the Inertial Measure-
ment Unit (IMU) in the smartphone and sensors in the unmanned
vehicle (e.g., mmWave radar and camera). We propose several novel
methods to overcome challenges such as heterogeneous data pro-
cessing, asynchronization, and imitating attacks. The prototype is
implemented on an unmanned vehicle and various smartphones,
and evaluation in different real-world scenarios shows that W4S
achieves an equal error rate below 0.013 against various attacks.

CCS CONCEPTS

• Security and privacy → Authentication; • Networks → Mo-

bile and wireless security.
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Table 1: Comparison with existing approaches.

Approaches T1 T2 T3 T4

Biometric [26, 46] � � � �

QR code [18] � � � �

Password [8, 25] � � � �

Distance-bounding [28] � � � �

W4S � � � �

1 INTRODUCTION

Unmanned vehicle delivery services are believed to potentially
revolutionize last-mile delivery in a more sustainable and cost-
effective way. The market for unmanned delivery vehicle services is
estimated to exceed $90.21 billion by 2030 [27]. In this context, many
giant courier service companies (e.g., FedEx [12] and DHL [16]),
large retailers (e.g., Amazon [32] and Alibaba [7]), and startup
companies (e.g., Udelv [36] and Nuro [25]) have deployed mature
unmanned vehicles for package delivery in the community.

The exponential growth of package deliveries using unmanned
vehicles [24, 37] has raised serious concerns regarding package
security. Impersonation attacks, where an attacker impersonates
a legitimate user, pose the primary threat to these delivery ser-
vices [23]. Four different types of impersonation attacks have been
identified, depending on the stage of the delivery process, includ-
ing: 1) malicious consignee during the delivery stage, where the
attacker impersonates a legitimate consignee to steal the package;
2) malicious vehicle during the delivery stage, where a malicious
unmanned vehicle controlled by the attacker impersonates a le-
gitimate unmanned vehicle to deliver fake packages; 3) malicious
vehicle during the pickup stage, where a malicious unmanned vehi-
cle controlled by the attacker impersonates a legitimate unmanned
vehicle to steal packages; and 4) malicious consignor during the
pickup stage, where the attacker impersonates a legitimate con-
signor to load fake packages into the unmanned vehicle. Given
the above security concerns, it is imperative to provide a secure
authentication method for unmanned vehicle delivery services.

Existing authentication methods mainly adopt one-way authen-
tication in the following aspects: 1) Biometric-based authentication
methods use distinctive biometric information, such as fingerprint
and face, for authentication [26, 46]. However, there are many
known attacks against this kind of authentication [19, 45]. More-
over, it uploads private user biometric information to the server,
which can lead to user privacy leakage. In addition, it needs to
profile before use, which impairs usability. 2) QR code has also been
used for the authentication of unmanned vehicle delivery such
as autonomous vehicle delivery company Zoox [18]. It proposes
to authenticate a user by having the vehicle scan a QR code on
the user’s smartphone. However, it is vulnerable to vision relay
attacks. For example, a malicious unmanned vehicle tricks the user
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Figure 1: Application scenario of W4S. The unmanned vehicle and smartphone
sense the user’s random hand-waving to obtain similar sensing results for authentica-
tion, as the key-protected channel alone is insufficient.

to obtain his QR code and forwards the QR code to the attacker
to open the legitimate unmanned delivery vehicle. 3) One-time
password-based authentication [8, 25] is a common authentication
method, but it is also vulnerable to relay attacks [20]. The above
one-way authentication techniques that solely authenticate one
party’s identity are vulnerable to impersonation attacks. Further-
more, certain approaches have privacy and usability concerns. To
improve security, distance-bounding protocols, a distance-based
mutual authentication method, are proposed [28]. It verifies the
proximity of authentic users by calculating the round-trip time be-
tween the authenticator and authenticatee through a challenge and
response mechanism, thereby thwarting relay attacks. However,
the effectiveness of the distance bound calculated by this protocol
can be easily compromised by even the slightest processing delay,
necessitating additional hardware support that is not yet widely
available. Furthermore, there have been limited studies on the se-
curity issues of this protocol [9], and researchers have proposed
new attacks [3] against it, rendering it unreliable. In summary, the
current authentication methods have limitations including the need
for additional hardware, one-way authentication, vulnerability to
common attacks, and privacy leakage risks.

The aforementioned limitations motivate us to develop an au-
thentication scheme for unmanned delivery vehicle services that
satisfy four targets as illustrated in Tab. 1: T1) no need for addi-
tional hardware, T2) mutual authentication, T3) being resistant to
common attacks, and T4) no user privacy leakage risks. To this
end, we propose Wave-for-Safe (W4S), a multisensor-based mu-
tual authentication method for unmanned vehicle delivery services.
Fig. 1 illustrates an exemplary scenario of W4S. We use the built-in
sensors in vehicles and smartphones to perform mutual authentica-
tionwithout requiring extra hardware. Specifically, we leverage
the lower bound on the similarity of the sensed data from both

sides as an additional requirement for an insufficient key-protected
channel 1, which is based on the observation that the user’s ran-
dom waving motion data sensed by the vehicle and the smartphone
should be correlated. In addition, our system is resistant to com-

mon attacks due to the fact that it is difficult for imitating attackers
(imitating a legitimate user’s hand-waving) as well as eavesdrop-
ping attackers to obtain accurate sensing data of a legitimate user’s
wave operation. Although an attacker can obtain similar sensing
data in a certain dimension, W4S can accurately detect such an
attack using 3D motion data and a siamese neural network-based
model. Furthermore, W4S does not need to upload personal infor-
mation, indicating no user privacy leakage risks. In summary,
the main contributions of this paper are as follows:

1A key-protected communication channel is studied in prior existing authentication
methods for unmanned vehicle delivery [2]. Due to radio relay attacks [14, 40], a
key-protected channel alone is insufficient for authentication.

Table 2: Mutual authentication for unmanned delivery services.

Scheme Scenarios Sensors Sensing Target

G2Auth [41] Drone IMU, Camera 1D hand-waving
Smile2Auth [33] Drone Camera Facial expression
H2Auth [42] Drone Microphone Drone noises

W4S
Unmanned
vehicle

mmWave radar,
IMU, Camera

3D hand-waving

• We propose W4S, the first mutual authentication system for un-
manned vehicle delivery services, which requires no additional
hardware, is mutual authentication, resistant to relay and imita-
tion attacks, and has no user privacy leakage risks.

• We develop a series of advanced signal processing methods to
enable accurate 3D acceleration extraction of the user’s hand-
waving movements from the multi-modal sensors (i.e., IMU,
mmWave radar, and camera) to facilitate robust authentication.

• We propose a spatial-temporal synchronization approach to fuse
multisensor data from the unmanned vehicle and the smartphone,
and design a novel two-stage siamese neural network to discrim-
inate between legitimate users and malicious attackers.

• We implement the W4S prototype on an unmanned vehicle and
various types of smartphones. Real-world experiments show that
W4S can authenticate a user with an average equal error rate
below 0.013. Security analysis is also conducted to show that
W4S is resistant to common attacks.

2 RELATEDWORK

Mutual authentication for unmanned delivery services. Tab. 2
categorizes the authentication methods for unmanned delivery ser-
vices. G2Auth [41] is a mutual authentication system for drone
delivery services, which utilizes 1D acceleration obtained from the
drone’s camera and the user’s smartphone IMU for authentication.
Smile2Auth [33] is another drone-user authentication method that
captures video of the user’s expression via the drone’s camera and
the front camera of the user’s smartphone, respectively. Meanwhile,
H2Auth [42] performs mutual authentication between the user and
the drone using unique drone noise characteristics without requir-
ing any sound fingerprint. Though there are many schemes for
drone-user authentication, there is no solution that satisfies the
four targets mentioned in Sec. 1 for unmanned vehicle delivery ser-
vices. This paper, for the first time, presents a mutual authentication
scheme explicitly designed for unmanned vehicle delivery services.
W4S builds upon the concept of the above authentication methods
for drone delivery [33, 41, 42], utilizing randomness derived from
different sensing targets to establish authenticity. However, W4S
further enhances security by leveraging multi-model sensors on
unmanned vehicles to extract 3D hand-waving. Specifically, the
commonly equipped mmWave radar on unmanned vehicles is uti-
lized in our study as a side channel for mutual authentication. The
mmWave side channel provides depth information regarding the
user’s hand movement, which can lead to enhanced mutual au-
thentication performance when compared to previous studies that
relied solely on camera [41] as will be introduced in Sec. 8.2.
Similarity measurement-based authentication. W4S can be
categorized as similarity measurement-based authentication, which
uses the similarity measurement of different devices to the same tar-
get (e.g., human’smovement pattern) for authentication. P2Auth [22]
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uses similar timestamps measured by clocks on different IoT de-
vices for the same event for authentication. EchoKey [17] uses the
fine-grained similar spatial context of the receiving device carried
by the ambient sound signal for authentication. Different from
these works, W4S, the first multisensor-based mutual authentica-
tion scheme, is proposed for unmanned vehicle delivery services.
Biometric-based authentication.Many authentication schemes
are based on users’ physiological information (e.g., face [46], fin-
gerprint [26]) or behavioral characteristics (e.g., gait [13]), which
raise privacy concerns and require the users’ bio-features to be
registered into the database in advance. Moreover, users’ behavior
characteristics may change over time. Unlike these solutions, W4S
eliminates the requirement of registration and uploading private
data by only using the user’s real-time hand-waving information.

3 FEASIBILITY STUDY AND CHALLENGES

3.1 Design Choices

Sensor choice. Our goal is to achieve mutual authentication with-
out introducing additional hardware costs as described in Sec. 1.
Although the existing unmanned vehicles are equipped with var-
ious sensors, we find that most commercial unmanned delivery
vehicles are equipped with millimeter-wave (mmWave) radars and
cameras for cost reasons [8, 12, 25, 35, 36]. Inertial Measurement
Unit (IMU) is a common sensor in modern smartphones, which can
be used to obtain acceleration information when the user waves
the smartphone. Therefore, we choose the camera, mmWave radar
of the vehicle, and IMU of the smartphone for authentication.
Metric choice. Since the information obtained from these three
sensors needs to be fused and compared, we have to choose a
unified metric for them. However, fine-grained trajectory and ve-
locity inferences based on IMU sensory data from smartphones
remain an unsolved problem [34] due to noisy acceleration data
derived from imperfect hardware. Moreover, the integration of such
noisy acceleration leads to noise accumulation, thus making the
inferred velocity and trajectory information inaccurate. Therefore,
we choose acceleration as the unified metric for authentication.

3.2 Feasibility Analysis

Based on the above analysis, we can utilize the mmWave radar and
camera on the unmanned vehicle and the IMU on the smartphone
to sense the acceleration of the user’s hand-waving for mutual
authentication. A recent work shares a similar idea, but it uses the
on-drone camera as well as the IMU in the user’s smartphone to
acquire 1D acceleration of the user’s hand-waving for human-drone
authentication [41]. However, based on our preliminary study, the
generated 1D acceleration sequences have low complexity and can
be easily imitated by attackers. In our experiments, the legal user
(U ) waves the smartphone (S) towards the unmanned vehicle (V ),
the camera and mmWave radar on the unmanned vehicle side and
the smartphone on the user side recorded acceleration information
separately. Additionally, another skilled imitating attacker (A) with
a smartphone (𝑆 ′) mimics the hand-waving of the user and attempts
to obtain the same acceleration sequence to fool the system.

Correlation Analysis. The normalized acceleration we ob-
tained is shown in Fig. 2. Although A can easily access almost the
same 1D and 2D acceleration sequence (the 1D and 2D correlation
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Figure 2: 1/2D acceleration vs. 3D acceleration. When using 1D acceleration, the
correlation coefficients between V-U and A-U are 0.9881 vs. 0.9770. When using 2D
acceleration, the correlation coefficients between V-U and A-U are 0.9826 vs. 0.9756.
When using 3D acceleration, the correlation coefficients between V-U and A-U are
0.9804 vs. 0.8310. The conclusions are: 1) the correlation of A-U is always lower than
that of V-U, and 2) using 3D acceleration is more secure than using 1/2D acceleration.

coefficients between A and U are 0.9770 and 0.9756, respectively),
the complete 3D acceleration sequence is difficult to access (the 3D
correlation coefficient between A and U decreases to 0.8310), which
is determined by the A’s point of view, because no matter where
A is standing, he always fails to get the complete and accurate 3D
acceleration information due to the limitations of observation an-
gle. However, V can obtain complete and accurate 3D acceleration
information (the correlation coefficient between V and U is 0.9804
when using 3D acceleration) by combining multiple sensors.

Complexity Analysis. Afterward, we calculate the complexity
for different dimensions of acceleration information in our dataset
as will be introduced in Sec. 7, which contains 1,200 3D acceler-
ation sequences. The complexity is measured by sample entropy,
which reflects the complexity of time-series sequences. The aver-
age sample entropy of 1D, 2D, and 3D time-acceleration sequences
are 0.6225, 0.6694, and 1.4509, respectively, indicating that the 3D
information is more complex to ensure security. These preliminary
experiments illustrate both the limitations of using only 1D or 2D
acceleration and the advantages of using 3D acceleration. Therefore,
we choose to use 3D hand-waving acceleration for authentication.

However, we need to address several non-trivial challenges.
• Challenge 1:W4S relies on the accurate sensing of the user’s hand-
waving movements by three different sensors (i.e., mmWave
radar, camera, and IMU). The raw data captured by different
sensors contains a lot of interference (e.g., dynamic/static envi-
ronmental noise and movement noise generated by the user’s
body). Each sensor exhibits diverse resilience to different types
of interference, and how to design the corresponding signal pro-
cessing algorithms to get accurate 3D acceleration according to
the characteristics of different sensors is the first challenge.

• Challenge 2: Since the unmanned delivery vehicle and the user’s
smartphone do not share the same clock signal, how to design
an accurate time synchronization scheme is a prerequisite for
accurate sensory data matching. In addition, the 3D acceleration
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Figure 3: Threat model. (a) In a relay attack,𝑉 ′ and 𝑆 ′ fool𝑉 and 𝑆 by relaying the
Bluetooth signal. (b) In an imitating attack,𝑉 ′ induces𝑈 to start hand-waving, while
𝐴 imitates𝑈 ’s movements in front of𝑉 to make𝑉 obtain the same acceleration as𝑈 .
All communications between𝑉 and 𝑆 are relayed through𝑉 ′ and 𝑆 ′ .

obtained from the vehicle side and the user’s smartphone side
are not under a unified spatial coordinate system. Therefore, a
temporal-spatial synchronization method is required in W4S.

• Challenge 3: As aforementioned, even if we use the 3D accelera-
tion for authentication, the correlation coefficient between the
attacker (𝐴) and legitimate user (𝑈 ) is still higher than 0.8, indi-
cating that we cannot use the linear correlation coefficient as a
single discriminant for authentication. Therefore, a fine-grained
discrimination method is needed to obtain promising accuracy.

4 SYSTEM MODEL

We consider a mutual authentication system involving two entities,
the user’s smartphone (𝑆) and the unmanned vehicle (𝑉 ). In this
scheme, both 𝑆 and 𝑉 serve as the authenticator and authenticatee.
Both parties capture the user’s hand-waving, process the 3D accel-
eration information locally, and exchange it via a pre-established
key-protected channel. Authentication is deemed successful only
when both 𝑆 and 𝑉 have independently passed the authentication.

4.1 Threat Model

Relay attacks. The relay attack can easily break the key-protected
channel-based authentication system on unmanned vehicles [14,
40], which is also applicable to unmanned delivery scenarios. For
example, as shown in Fig. 3(a), given a key-protected Bluetooth
channel, without knowing the key, the attacker’s smartphone (𝑆 ′)
and malicious unmanned vehicle (𝑉 ′) can simply relay the Blue-
tooth signals between the user’s smartphone (𝑆) and the unmanned
vehicle (𝑉 ), such that both 𝑉 and 𝑆 can be fooled to believe the
proximity and conduct the authentication even if 𝑉 and 𝑆 are far
away from each other. Our threat model assumes attackers have
the ability to launch relay attacks, such that an attacker can use
a malicious unmanned vehicle to fool a victim user to start the
authentication procedure and relay the encrypted traffic.
Imitating attacks. As shown in Fig. 3(b), after launching relay
attacks, an adaptive attacker (𝐴) familiar with W4S can replicate
a user’s hand-waving movements. By observing the user’s hand-
waving trajectory, the attacker can mimic similar hand-waving
movements in front of 𝑉 , while 𝑉 ′ prompts the legitimate user
(𝑈 ) to hand-wave. The attacker’s goal is to induce 𝑉 to obtain the
same acceleration as𝑈 . It should be noted that all encrypted traffic
between 𝑉 and 𝑆 is relayed by 𝑉 ′ and 𝑆 ′. W4S can handle such
attacks, as detailed in Sec. 8.2.
Attacks out of scope. The attacker may employ computer vision-
based methods along with a robotic arm to imitate the user’s hand-
waving, which is known as the robotic arm-based imitation attack.
However, such attacks are hard to implement due to the significant
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Figure 4: Approach overview.

cost [29] and vulnerability to time delays [6], thereby making them
an impractical avenue for our current study.

4.2 System Overview

Assumptions.We assume a pre-established key-protected commu-
nication channel (e.g., Bluetooth and Wi-Fi) between 𝑉 and 𝑆 for
data transmission. To enable authentication, 𝑉 is equipped with at
least a pair of mmWave radar and camera, which are synchronized
in the time domain and transformed to the same coordinate system
using known calibration parameters. Calibration can be achieved
using existing methods in the literature [5]. We assume the data
collected by built-in sensors are trustworthy [15] and processed in
the local trusted execution environment [30]. However, the current
communication method is vulnerable to relay attacks, as previously
discussed. Assuming that other people or objects do not obstruct the
line-of-sight between the user and vehicle during authentication.
Approach overview. As illustrated in Fig. 4, W4S is composed
of three primary components: vehicle-side signal processing, user-
side signal processing, and authentication. The unmanned vehicle
and the user’s smartphone utilize their respective sensors, includ-
ing mmWave radar and camera in the unmanned vehicle, and an
IMU in the smartphone, to acquire acceleration information when
the user waves the smartphone. Through the spatial-temporal syn-
chronization and similarity detection of obtained 3D acceleration
information, mutual authentication between the user and the vehi-
cle is achieved. The procedure of W4S is as follows:
(1) 𝑈 places a delivery/pickup order using the delivery app on

𝑆 . After 𝑉 arrives at the designated location, 𝑆 establishes a
key-protected communication channel with 𝑉 . 𝑉 sends a start
notification to 𝑆 and opens built-in mmWave radar and camera.

(2) Upon receiving the start notification, 𝑆 generates a vibration
to notify𝑈 to start hand-waving movements. After 𝑆 collects
data of time duration 𝑡 (𝑡 is studied as a parameter) through the
built-in IMU, it generates another vibration to notify 𝑈 to stop
waving and sends a stop notification to 𝑉 .

(3) The hand-waving data sensed by 𝑆 and 𝑉 are exchanged after
local processing, and the authentication decision is made inde-
pendently. If the authentication is successful on both sides, the
package delivery is executed; otherwise, it goes back to step 2
until the maximum number of attempts is reached.
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5 SIGNAL PROCESSING

5.1 Vehicle-side Data Processing

5.1.1 mmWave Data Processing. The mmWave radar mounted
on the unmanned delivery vehicle is leveraged to obtain the 1D ra-
dial acceleration information when the user waves the smartphone.

• Range-Doppler Maps generation. The mmWave radar transmits
the frequency modulated continuous wave (FMCW) signal, which
is called chirp. The frequency of the chirp signal increases linearly
with time and can be expressed as 𝑓 = 𝑓0 + 𝑆𝑡 , where 𝑓0 is the
start frequency and 𝑆 is the frequency modulation slope. Suppose
the amplitude of the transmitted signal at time 𝑡 is 𝐴𝑇 , then the
transmitted sinusoidal FMCW signal 𝑇 (𝑡) can be expressed as

𝑇 (𝑡 ) = 𝐴𝑇 cos
[
2𝜋

(
𝑓0𝑡 + 𝑆𝑡

2/2
) ]
. (1)

When the transmit signal encounters an obstacle (e.g., the legitimate
user) at distance 𝑑 , the radar will receive a delayed version of the
transmitted signal 𝑅(𝑡), which can be expressed as

𝑅 (𝑡 ) = 𝐴𝑅 cos
[
2𝜋

(
𝑓0 (𝑡 − 𝜏 ) + 𝑆 (𝑡 − 𝜏 )2/2

) ]
, (2)

where 𝐴𝑅 is the amplitude of the received signal, 𝜏 = 2𝑑/𝑐 is the
time delay, and 𝑐 is the speed of light. Finally, the transmitted signal
𝑇 (𝑡) is mixed with the received signal 𝑅(𝑡), and a low-pass filter
is used to filter out the sum frequency components to obtain the
intermediate frequency (IF) signal:

𝑌 (𝑡 ) = 𝐿𝑃𝐹 {𝑇 (𝑡 ) · 𝑅 (𝑡 ) } = 𝐴𝐼𝐹 cos
(
2𝜋 𝑓𝐼𝐹 𝑡 + 𝜙𝐼𝐹

)
, (3)

where 𝐴𝐼𝐹 is the amplitude of the IF signal, 𝑓𝐼𝐹 = 2𝑆𝑑/𝑐 is known
as the beat frequency, and 𝜙𝐼𝐹 is the phase. The IF signal is initially
subject to range dimension (fast time) Fast Fourier Transform (FFT)
to obtain target range information. Subsequently, a second FFT is
conducted in the Doppler dimension (slow time) to obtain velocity
information. Using the combined range and velocity information,
we generate the Range-Doppler Map (RDM) for each frame, as
illustrated in Fig. 5(a).

• Noise reduction. Besides hand-waving information, raw RDM
contains static noises (e.g., user’s body and DC component) and
dynamic noises (e.g., nearbymoving objects and pedestrians), which
are shown in Fig. 5(a). Therefore, we need to denoise the raw RDMs
and keep the user’s hand-waving information only. We use the
mean value of each RDM along the slow time dimension to remove
the static noises. During the authentication process, there may
also be dynamic noises caused by pedestrians or moving objects
in the RDM, which can be eliminated by the following method.
As described in Sec. 4.2, since we assume that no other person or
objects pass between the user and the unmanned vehicle during the
authentication process, the user is the closest object to the vehicle.
Therefore, for each RDM frame, we only keep the closest object,
which reflects the range and velocity information of the user’s
hand-waving movements. The denoised RDM is shown in Fig. 5(b).

• Acceleration acquisition. To obtain radial movement informa-
tion of the smartphone, we use the following equation to transform
the RDM of all frames into a 2D time-velocity feature map:

𝑉(𝑛,𝑖 ) =

∑𝑁𝑅
𝑗=1 [𝑅𝐷𝑀(𝑛,𝑖 ,𝑗 ) · 𝑅 𝑗 ]

𝑁𝑅
, 𝑖 ∈ [1,𝑁𝐷 ], 𝑗 ∈ [1,𝑁𝑅 ], (4)

where 𝑁𝑅 is the number of Range FFT, 𝑁𝐷 is the number of Doppler
FFT, 𝑅 𝑗 is the range bin index, and 𝑅𝐷𝑀(𝑛,𝑖 ,𝑗 ) represents the value
corresponding to Doppler bin 𝑖 and range bin 𝑗 in the 𝑛th RDM
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(a) Raw RDM.
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Figure 5: Noise reduction.
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Figure 6: Correspondence between waving smartphone and velocity.

frame. We show the correspondence between the waving smart-
phone process (phase 𝑎-𝑒) and the time-velocity feature map in
Fig. 6. Due to the static noise elimination algorithm described above,
the obtained time-velocity feature map contains missing values near
the zero velocity component. Meanwhile, there are other anomalies
in the obtained feature map. A K nearest neighbor (KNN) smooth-
ing filter is used to filter out the anomalies, and the image dilation
operation is used to connect discontinuous points. Finally, the 1D
radial acceleration of the smartphone is obtained by taking the
derivative of the velocity.

5.1.2 Video Data Processing. In order to obtain the 2D acceler-
ation information when the user waves the smartphone, we first
locate the smartphone and track its trajectory. However, directly lo-
cating and tracking the user’s smartphone is difficult due to varying
light conditions and other environmental distractions. Therefore,
we design a three-step smartphone acceleration acquisition scheme
from the video as shown in Fig. 7(a).

• Person detection. In the first step, we use YOLO-FastestV2 [10],
which is a lightweight, fast, and easy-to-deploy objection detection
method, to detect the user’s body. Although there may be multiple
people in the camera frame, we assume that the user is dominant
(i.e., the user with the largest bounding box in the frame).

• Smartphone localization. Direct target detection of the user’s
smartphone is difficult because smartphones have different sizes
and colors, and the area covered by the user’s hand is also vary-
ing. We locate the flashlight on the user’s smartphone to get the
smartphone location even at night [41]. Since the brightness of the
flashlight part is significantly different from the other parts in the
image, we adjust the contrast limits of the video frame to highlight
the flashlight part as shown in Fig. 7(b). Meanwhile, due to the in-
terference from other static light sources such as street lights in the
surrounding environment, we use a simple frame difference method
to eliminate interference. Then, a contour detection method [1]
is used to search the flashlight point in the first frame, and this
point is marked as the initial tracking position. Person detection
is necessary during the day due to reflective surfaces, using the
obtained bounding box to reduce the search range. While at night,
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Figure 7: Video data processing.

the flashlight’s high brightness distinguishes the smartphone from
the surroundings, eliminating the need for person detection.

• Smartphone tracking. Once we get the flashlight (smartphone)
location, we use SiameRPN++ [21] to track the flashlight. The out-
put of target tracking is the center point coordinates of the bounding
box. Then, a Savitzky-Golay filter is used, which can smooth the
raw trajectory data while retaining the variation information more
effectively. Finally, we obtain the final 2D acceleration by taking
the second derivative of the smoothed trajectory.

5.2 User-side Data Processing

The 3D acceleration on the user side is obtained directly from the
smartphone’s IMU. First, we preprocess the raw acceleration data
to remove the effect of gravity [38]. In addition, there are other
interfering noises such as slight hand tremors when the user waves
the smartphone, which affect the raw acceleration information
sensed by the IMU. To solve this problem, we use independent
component analysis (ICA), a blind source separation method, to
separate the waving component of the acceleration from other
interference components. Assume that the acceleration measured
by the IMU is 𝐴(𝑡), which is a mixture of hand-waving and hand
trembling. Then, the ICA model of our problem can be expressed as
𝐴(𝑡) = 𝐴 · 𝑆 (𝑡), where 𝐴 is the mixing matrix and 𝑆 (𝑡) represents
the independent sources. The FastICA algorithm is leveraged to
obtain the unmixing matrix𝑊 = 𝐴−1 and the source signals can be
estimated by 𝑆 (𝑡) =𝑊 ·𝐴(𝑡). Finally, the denoised 3D acceleration
can be obtained by selecting the independent component with the
lowest dominant frequency [43].

6 AUTHENTICATION

6.1 Spatial and Temporal Synchronization

W4S relies on the similarity of the 3D acceleration sequences ob-
tained from the user’s smartphone-side and the unmanned vehicle-
side. However, the unmanned vehicle and smartphone do not share
the same clock and coordinate system, which leads to a temporal
and spatial asynchronization of the obtained 3D acceleration se-
quences. This asynchronization can seriously affect the similarity
of the sequences and thus the authentication results. To solve this
problem, we design spatial and temporal synchronization methods
to synchronize the raw 3D acceleration sequences.

6.1.1 Spatial Synchronization. Since the 3D acceleration se-
quences obtained from the smartphone side and the unmanned
vehicle side are not in the same coordinate system, we need to
spatially synchronize them. As shown in Fig. 8(a), the world coor-
dinate system W is defined by east, north, and the reverse gravity
direction (𝑋𝑤 ,𝑌𝑤 ,𝑍𝑤), the smartphone coordinate system S is
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(a) Different coordinate systems in W4S.
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(b) Top view in R.
Figure 8: Spatial synchronization.

(𝑋𝑠 ,𝑌𝑠 ,𝑍𝑠 ), the camera coordinate system C is (𝑋𝑐 ,𝑌𝑐 ,𝑍𝑐 ), and the
mmWave radar coordinate system R is (𝑋𝑟 ,𝑌𝑟 ,𝑍𝑟 ). The vehicle co-
ordinate systemV is (𝑋𝑣 ,𝑌𝑣 ,𝑍𝑣), which is not shown in the figure.
We define W as the reference coordinate system and explain how
to transform the 3D acceleration sequences from the vehicle side
and the smartphone side to the reference coordinate system.

• Vehicle-side spatial synchronization. Since mmWave radar only
obtains radial acceleration 𝑎𝑅 , we need to transform 𝑎𝑅 to R. As
shown in Fig. 8(b), the transformation can be done by using 𝑎𝑅

multiplied by cos𝜃 and sin𝜃 , where 𝜃 is the azimuth. To obtain the
azimuth 𝜃 , we design a method based on the MUSIC algorithm [31],
which is a high-resolution direction-finding algorithm for multiple
antenna systems. The covariance matrix 𝑅𝑥 of the received signals
𝑋 from 𝐾 antennas of mmWave radar is first calculated as follows:

𝑅𝑥 =
1

𝐾

𝐾∑
𝑘=1

𝑋 (𝑖 )𝑋𝐻 (𝑖 ) , (5)

where 𝑋𝐻 is the conjugate transpose of 𝑋 . Then, the eigendecom-
position can be represented as

𝑅𝑥 =
[
𝑈𝑠 𝑈𝑛

] [Λ𝑠
Λ𝑛

] [
𝑈𝑠
𝑈𝑛

]
, (6)

where𝑈𝑠 and𝑈𝑛 are the signal space and noise space, Λ𝑠 and Λ𝑛
are diagonal matrices consisting of eigenvalues in signal space and
noise space, respectively. The spatial spectrum can be expressed as

𝑃 (𝜃 ) =
1

a𝐻 (𝜃 )𝑈𝑛𝑈𝐻
𝑛 a(𝜃 )

, (7)

where a(𝜃 ) is the steering vector. Finally, 𝜃 can be obtained by
spatial spectrum peak search. Therefore, the coordinates of radial
acceleration 𝑎𝑅 in R can be expressed as (𝑎𝑅 sin𝜃 ,𝑎𝑅 cos𝜃 , 0).

Since the relative positions of the mmWave radar and the camera
are fixed, the rotation matrices Rcr from R to C and R

v
c from C

to V are assumed to be known (can be calculated by calibration
method [5]). Therefore, the acceleration obtained by the mmWave
radar in C can be expressed as [𝑎𝑟𝑥𝑐 ,𝑎

𝑟
𝑦𝑐 ,𝑎

𝑟
𝑧𝑐 ]

� = R
c
r [𝑎𝑅 sin𝜃 ,𝑎𝑅

cos𝜃 , 0]�. Combining the 1D acceleration component 𝑎𝑟𝑦𝑐 along 𝑌𝑐
with the 2D acceleration (𝑎𝑐𝑥𝑐 ,𝑎

𝑐
𝑧𝑐 ) obtained by the camera, we can

obtain the 3D acceleration (𝑎𝑐𝑥𝑐 ,𝑎
𝑟
𝑦𝑐 ,𝑎

𝑐
𝑧𝑐 ) in C. Finally, the vehicle-

side 3D acceleration in the reference coordinate system can be
expressed as [𝑎𝑣𝑥𝑤 ,𝑎

𝑣
𝑦𝑤 ,𝑎

𝑣
𝑧𝑤]

� = R
w
v R

v
c [𝑎

𝑐
𝑥𝑐 ,𝑎

𝑟
𝑦𝑐 ,𝑎

𝑐
𝑧𝑐 ]

�, where Rwv
is the transformation matrix from V to W, which can be obtained
by built-in GPS on unmanned vehicle [5, 39].

• Smartphone-side spatial synchronization. The acceleration of
the smartphone’s IMU can be directly transformed to the reference
coordinate system by multiplying a transformation matrix, which
can be expressed as [𝑎𝑠𝑥𝑤 ,𝑎

𝑠
𝑦𝑤 ,𝑎

𝑠
𝑧𝑤]

� = R
w
s [𝑎𝑠𝑥𝑠 ,𝑎

𝑠
𝑦𝑠 ,𝑎

𝑠
𝑧𝑠 ]

�, where
𝑎𝑠𝑥𝑠 , 𝑎

𝑠
𝑦𝑠 , and 𝑎

𝑠
𝑧𝑠 are the three acceleration components obtained

by the smartphone’s IMU. Rws is the transformation matrix from S

toW and can be obtained by the smartphone API.
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6.1.2 Temporal Synchronization. Since the user’s smartphone
and the unmanned vehicle do not share the same clock, the data
from the two sides need to be temporally synchronized. We first
unify the sampling rate of the acceleration obtained from the three
sensors by downsampling to 60Hz. Then a two-step time synchro-
nization method is proposed in W4S as follows.

• Coarse-grained synchronization. As introduced in Sec. 4.2, the
unmanned vehicle sends the start notification to the user’s smart-
phone, and the smartphone generates a vibration to notify the user
to start authentication, but this temporal synchronization can be
inaccurate due to the user response time, hardware response time,
and transmission delay.

• Fine-grained synchronization. Since W4S is based on the ac-
celeration information when the user waves the smartphone, and
the obtained acceleration contains multiple extreme points (peaks
and valleys), we use extreme points of the axis with the highest
variance detected on the user’s smartphone side and the vehicle
side for fine-grained temporal synchronization. Specifically, we use
the time stamps corresponding to the first three extreme points
as the key points for synchronization. The origin time point after
temporal synchronization can be expressed as

𝑇𝑚 =
1

3
(𝑡𝑚,1 + 𝑡𝑚,2 + 𝑡𝑚,3 ) , 𝑚 ∈ {𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 , 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 }, (8)

where𝑇𝑚 is the original time point of the acceleration after temporal
synchronization at the𝑚-side, 𝑡𝑚,𝑖 (𝑖 ∈ {1, 2, 3}) are the key points
for fine-grained synchronization at the𝑚-side.

6.2 Decision Making

The success of authentication is assessed by calculating the sim-
ilarity between the 3D acceleration data obtained from the user
and the unmanned vehicle. However, the correlation coefficient
between the user and attacker still remains high even when using
3D acceleration, making traditional correlation threshold-based
methods unsuitable. To address this, we propose a novel siamese
neural network (SNN) based framework for authentication. SNNs
have shown promise in calculating similarity [11, 44], and can learn
the input data representation based on the similarity metric used.

As shown in Fig. 9, we design a dual-input SNN framework for
mutual authentication in unmanned vehicle delivery. The SNN
calculates the similarity between the 3D acceleration sequences
obtained from the smartphone and the vehicle. The SNN comprises
two identical sub-networks, which process each input and work as
encoders. Each sub-network within the model is composed of two
layers of Bidirectional Long Short-TermMemory (BiLSTM). BiLSTM
is particularly advantageous for processing time-series sequences,
as it is capable of capturing both past and future contexts effectively.
The first BiLSTM layer has 256 units and returns sequences to
allow the second BiLSTM layer to receive sequence input. The

second BiLSTM layer has 128 units and does not return sequences,
thus its output could serve as the encoding of the input signal.
The similarity between the two encodings is obtained using the
Euler distance. Specifically, the absolute difference between two
encodings is calculated element-wise. This distance vector is then
fed into a fully connected layer with a single unit and a Sigmoid
activation function, which outputs the final authentication result.

Training. The training procedure is performed in two steps: 1)
shared layers training and 2) decision module training. To train the
shared layers, we use a semi-hard triplet configuration with a triplet
loss, which is ideal for training samples with small variability. The
loss function can be represented as

𝐿𝑜𝑠𝑠 = max(𝑑 (𝑎,𝑝 ) − 𝑑 (𝑎,𝑛) +margin, 0) , (9)

where 𝑑 (·) is ℓ1 distance, margin is the hyperparameter in semi-
hard triple loss, 𝑎, 𝑝 , and 𝑛 represent anchor, positive and negative,
respectively. As shown in Fig. 10, under semi-hard triplet configu-
ration, we have 𝑑 (𝑎,𝑝) < 𝑑 (𝑎,𝑛) < 𝑑 (𝑎,𝑝) +margin, meaning that
the distance between the negative samples and the baseline samples
(anchor) is greater than the distance between the positive samples
and the baseline samples (anchor), but the triplet loss value has
not yet reached zero when the network can continuously reduce
the loss value through proper learning. Once the shared layers in
SNN are trained, their weights are frozen and the fully-connected
decision layer is attached to the shared layers. Finally, we train the
decision layers using binary cross-entropy as the loss function.

7 DATA COLLECTION

Devices. Fig. 11 shows the devices used in our experiments, includ-
ing an Apollo unmanned vehicle (3.6 GHz Intel Core i9-9900K CPU
and the Ubuntu 16.04 OS) and four smartphones. As shown in the
figure, we deploy a camera and a mmWave radar (TI AWR1642 )
for Apollo unmanned vehicle to capture users’ hand-waving move-
ments. The default resolution of the camera is set to 720P at 30 FPS.
The default frame rate of the mmWave radar in the vehicle is set
to 50 FPS with 255 chirp loops in each frame. We use four types
of smartphones (S1-S4) in the data collection: iPhone 13 Pro Max
(3.23GHz CPU, 6GB RAM, iOS 16), iPhone 12 (3.1 GHz CPU, 4GB
RAM, iOS 15), Samsung S10 (2.84GHz CPU, 8GB RAM, Android
11), and Nexus 6P (1.95GHz CPU, 3GB RAM, Android 9).

Dataset. The dataset used to evaluate the performance of W4S
consists of 40 subjects (24 males and 16 females) 2. The dataset
was collected from participants randomly selected in various public
locations, such as college entrances, apartment entrances, and mall
entrances. Participants were instructed to hold a smartphone and
press the "start" button on the screen to begin waving the device un-
til it vibrated. Each hand-waving motion lasted at least 5 s, and each

2Ethical approval has been granted by the corresponding organization.
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participant repeated the motion 30 times. There were no specific
requirements for how participants should wave the smartphone,
allowing for a diverse range of natural waving patterns. This makes
the hand-waving dataset highly realistic, reflecting a variety of
people and environments. As we use the triplet strategy for train-
ing, below we discuss how to generate the anchor, positive, and
negative samples in the training procedure. We collect acceleration
data from the smartphone (anchor sample) and the unmanned vehi-
cle (positive sample) when a participant performs hand-waving in
front of the vehicle, resulting in 40 subjects × 30 repetitions = 1, 200
anchor-positive pairs. For each anchor-positive pair, we randomly
select one positive from another subject as the negative sample.
Finally, we have 1,200 triplet sample pairs, each consisting of an
anchor sample, a positive sample, and a negative sample.

8 EVALUATION

System Implementation The implementation details of W4S are
described as follows. The SNN model is implemented based on
TensorFlow Lite and TensorFlow frameworks on the smartphone
and the vehicle, respectively. The model is first trained offline on
a desktop PC with Intel i7-10700 CPU, 64GB RAM, and RTX 3080
GPU, then deployed on the smartphone and unmanned vehicle.
Metrics: We adopt True Acceptance Rate (TAR), False Rejection
Rate (FRR), and False Acceptance Rate (FAR) as the performance
metrics for W4S. A lower FRR implies higher usability for autho-
rized users, while a lower FAR indicates better protection against
unauthorized access. Additionally, we report the receiver operating
characteristic (ROC) curve’s area under the curve (AUC) and the
equal error rate (EER). AUC provides an overall performance mea-
sure, and EER is the value of FRR or FAR when FRR equals FAR. A
lower EER indicates superior system performance.

8.1 Overall Performance

We use the collected dataset to evaluate the performance of W4S.
We adopt the leave-one-subject-out cross-validation mechanism
to obtain the average performance over all subjects. We iteratively
choose one subject for testing and use the data of the 39 subjects left
to train themodel.We report the average performance of all subjects.
Thus, we can check whether our system is user-independent, i.e.
whether it works for users that we have never seen during training.
Fig. 12 shows the ROC curve. We can see that W4S achieves an
average EER of 0.0126 and AUC of 0.9987. The low EER indicates
that W4S can distinguish authorized accesses from unauthorized
ones with high accuracy (i.e., 1-EER) of 0.9874.

8.2 Security Analysis

Against imitating attacks. As discussed in Sec. 4, based on relay
attacks, the attacker who knows how W4S works is able to observe
the behavior of the legitimate user. Then the attacker tries to imi-
tate the user’s waving trajectory to fool the legitimate unmanned
vehicle into obtaining similar sensor measurements with the user,
as introduced in Sec. 4.1. In this experiment, we recruit 10 partici-
pants as victims and another 10 as imitating attackers. Each pair
of attacker and victim performs the authentication operations on
each smartphone for 15 times. We consider two types of imitating
attackers, untrained and trained imitating attackers. Among them,
the untrained attackers are told to imitate the victim without previ-
ous knowledge, and the trained attackers are provided with a video

Figure 12: Overall performance. Figure 13: Security analysis.

of the victim’s authentication process for multiple practice sessions
to improve the imitating ability. Finally, a total of 600 trials are
conducted by untrained and trained attackers. As shown in Fig. 13,
W4S can successfully defend against untrained and trained imi-
tating attackers with 99.67% and 99.17% detection rates. However,
when 2D or 1D information is used by our system, the detection
rate drops significantly. Specifically, when using 2D information,
the detection rate of trained and untrained attackers decreased by
6.22% and 8.63%, respectively; when using 1D information, the de-
tection rate of trained and untrained attackers decreased by 16.79%
and 27.32%, respectively. This is because the 3D information is hard
for the attacker to observe as discussed in Sec. 3 and the human
reaction time is constantly varying [4], both of which impair the
3D acceleration values observed by the attacker in the temporal
and spatial domain. Although the attacker can obtain partially cor-
related 3D acceleration, our designed decision-making SNN with
fine-grained feature extraction capability can still distinguish the
attacker due to the robust decision-making model.
Against relay attacks. As outlined in Sec. 4, The effectiveness of a
relay attack depends on the attacker’s ability to accurately replicate
the user’s hand-waving. Our analysis has demonstrated that W4S
is able to withstand imitating attacks, thus rendering relay attacks
ineffective against the system. Hence, we conclude that W4S is
capable of effectively mitigating relay attacks.
Privacy analysis. Although the user’s face is not directly uploaded
to the server, privacy concerns may still arise if the vehicle captures
the user’s face. To mitigate privacy concerns, the user can cover
their face in their own way. Moreover, we can employ privacy-
protection methods like data anonymization to shield individuals
from being identified in captured videos.

8.3 Parameter Evaluation

Duration ofHand-waving.Asmentioned in Sec. 4.2, hand-waving
duration 𝑡 is controlled by the app which represents how long the
hand-waving lasts. Longer duration provides better security but
also takes longer to authenticate, which reduces usability. As shown
in Fig. 14(a), the average EER decreases as 𝑡 increases. The stability
increases as 𝑡 increases. Specifically, the EER drops by 0.099 when
𝑡 increases from 1 s to 5 s. We can also see that the sample entropy
increases with 𝑡 , indicating that the randomness of the acceleration
is increasing. We set 𝑡 to 3.25 s to balance the security and usability.
Camera Resolution.We evaluate the impact of the camera resolu-
tion onW4S by downsampling the resolution of 4K (3840×2160) to
1080P (1920 × 1080) and 720P (1280 × 720). As shown in Fig. 14(b),
the average EER of W4S decreases as the resolution increases, in-
dicating that the authentication performance is improved with a
higher camera resolution. The results show that W4S can achieve
EERs lower than 0.02 with different resolutions.
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(a) Duration of hand-waving. (b) Camera settings. (c) mmWave settings. (d) IMU sensor sampling rate.

(e) Smartphones. (f) Illuminance level. (g) Motions pattern. (h) Interference level.
Figure 14: Parameter evaluation.

Camera FPS.We analyze how camera FPS affects W4S by reducing
video frame rates from 60 FPS to 30 FPS and 24 FPS. Fig. 14(b) shows
that higher FPS leads to lower EER, indicating that videos with
higher FPS provide more information for authentication. EER drops
by 3.41% and 1.15% when FPS increases from 24 to 30 and from 30
to 60, respectively. We find that EER stabilizes at 30 FPS. Therefore,
we select it for subsequent experiments.
mmWaveRadarChirp Loops.Weexamine the impact ofmmWave
radar chirp loops on W4S’s performance, with Fig. 14(c) showing
that increasing loops from 64 to 128 and from 128 to 255 reduces
ERR by 2.13% and 1.69%, respectively. This decrease in EER can be
explained by the fact that larger chirp loops yield smaller velocity
resolution, as expressed by Δ𝑣 = 𝜆/(2𝑁𝑇𝑐 ), where 𝜆 is the wave-
length, 𝑁 is the number of chirp loops, and 𝑇𝑐 is the chirp period.
When the chirp period is fixed, the larger the chirp loops is, the
smaller the velocity resolution is, which means a more accurate
measurement of the velocity of the smartphone can be obtained.
mmWave Radar Frame Rate. To evaluate the impact of mmWave
radar frame rate, as shown in Fig. 14(c), we set the frame rate of the
mmWave radar to 10 FPS, 30 FPS, and 50 FPS, respectively. Since
hand-waving is a relatively fast process, when the frame rate is set
to 10 FPS, the mmWave cannot obtain the accurate acceleration
change, and hence the EER becomes higher. Experimental results
show that the difference between 30 FPS and 50 FPS is only 0.35%.
Therefore, 30 FPS is sufficient to capture accurate acceleration.
IMU Sensor Sampling Rate. We evaluate W4S’s robustness to
various IMU sensor sampling rates (10Hz to 100Hz) and find that
its EER drops significantly as the sampling rate increases from
10Hz to 25Hz (Fig. 14(d)). However, performance stabilizes at rates
higher than 50Hz, indicating that 50Hz is optimal for W4S.
Horizontal Distance.We assess W4S’s robustness to varying hor-
izontal distances between the user and vehicle (50 cm to 200 cm)
with 15 participants performing 20 authentication operations per
distance. Tab. 3 shows that while no significant difference is ob-
served as distance increases, performance drops considerably at
200 cm. Nonetheless, W4S maintains EERs smaller than 0.0225,
0.0251, and 0.0363 at distances of 50 cm, 100 cm, and 200 cm, respec-
tively, demonstrating its robustness to varying horizontal distances.

Angle of View. We examine W4S’s performance with varying
relative view angles between the user and vehicle, measured in
azimuth angle from the point of view of the mmWave radar. With
15 participants performing 20 authentication operations per angle,
Tab.3 shows that while the EER slightly increases by 0.0126 and
0.0144 when the angle changes from 0 °to 30 °and 30 °to 60 °, W4S
still achieves low EERs across various angles.
Smartphones.We evaluate the impact of different smartphones
on W4S by testing its performance with each smartphone type.
Fig. 14(e) demonstrates that there is no noteworthy difference in
performance among the four smartphones. Thus, the size, weight,
and operating system of smartphones have minimal effect on W4S.
Illuminance Level. To evaluate the impact of illuminance on the
performance of W4S, we collect data based on different times of
the day: 1) noon, 2) sunset, 3) dusk, and 4) night. As illustrated in
Fig. 14(f), W4S works slightly better with low illuminance levels,
probably because it can better position the tracking flash in this
case, but no significant differences are observed, indicating that our
system can work with different light levels.
Motion Pattern.We assess the robustness of W4S by testing its
performance with different hand-waving patterns, each exhibiting
varying complexity levels. Six patterns (G, Z, S, O, M, and L) were
selected based on their lines and corners. Our evaluation involved 15
participants performing the authentication procedure 20 times for
each pattern. Fig. 14(g) shows that all patterns produced comparable
EERs below 0.02, indicating the system’s robustness. However, the
G and S patterns had higher EERs due to more lines and corners.
Interference Level. To examine the impact of background inter-
ference on W4S’s performance, we conducted experiments under
four types of interference: 1) no interference, 2) static interference,
3) dynamic interference, and 4) mixed interference. The results, pre-
sented in Fig.14(h), reveal that W4S achieves slightly lower EER in

Table 3: EER under different positions of user.

Distance
Angle

0° 30° 60° Mean

50 cm 0.0122 0.0204 0.0348 0.0225
100 cm 0.0124 0.0235 0.0394 0.0251
200 cm 0.0195 0.0382 0.0512 0.0363
Mean 0.0147 0.0273 0.0418 0.0280
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the presence of static interference because it can be easily removed
using the method discussed in Sec.5. Notably, the system maintains
an EER of 0.0157, 0.0171, and 0.0180 under static, dynamic, and
mixed interference conditions, respectively.

9 CONCLUSION

In this paper, we propose W4S, a multisensor-based mutual au-
thentication system for unmanned vehicle delivery services. W4S
achieves the goals of no need for additional hardware, mutual au-
thentication, being resistant to attacks, and no user privacy leakage
risks. We propose a series of signal processing methods to enable
the user and the vehicle to extract the 3D acceleration of the user’s
hand-waving. Moreover, we propose a cross-sensor spatial synchro-
nization and an event-based temporal synchronization approach.
Afterward, we propose a novel SNN to obtain the authentication
results. Extensive evaluations show that W4S achieves an average
EER below 0.013 against various attacks.
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