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WashRing: An Energy-efficient and Highly
Accurate Handwashing Monitoring System via

Smart Ring
Weitao Xu, Huanqi Yang, Jiongzhang Chen, Chengwen Luo, Jia Zhang, Yuliang Zhao, Wen Jung Li

Abstract—The outbreak of COVID-19 has greatly changed everyone’s lifestyle all over the world. One of the best ways to prevent the
spread of infections is by washing hands properly. Although a number of hand hygiene monitoring systems have been proposed, they
either cannot achieve high accuracy in practice or work only in limited environments such as hospitals. Therefore, a ubiquitous,
energy-efficient and highly accurate hand hygiene monitoring system is still lacking. In this paper, we present WashRing—the first
smart ring-based handwashing monitoring system. In WashRing, we design a Partially Observable Markov Decision Process (POMDP)
based adaptive sampling approach to achieve high energy efficiency. Then, we design an automatic feature extraction scheme based
on wavelet scattering and a CNN-LSTM neural network to achieve fine-grained gesture recognition. Finally, we model the handwashing
gesture classification as a few-shot learning problem to mitigate the burden of collecting extensive data from five fingers. We collect
data from 25 subjects over 2 months and evaluate the system performance on both commercial OURA ring and customized ring.
Evaluation results show that WashRing achieves 97.8% accuracy which is 10.2%–15.9% higher than state-of-the-arts. Our adaptive
sampling approach reduces energy consumption by 64.2% compared to fixed duty cycle sampling strategies.

Index Terms—Hand washing, Wearable devices, Deep learning, Energy-efficiency
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1 INTRODUCTION

1.1 Background and Motivation

THE coronavirus disease 2019 (COVID-19) has emerged
as a pandemic, which spread in over 200 countries,

infected more than 172,630,000 people and caused more than
3,718,000 deaths, according to the latest data from the World
Health Organization (WHO) [1]. The pandemic changes
people’s lifestyles, places unprecedented demands on the
world’s health systems, devastates vulnerable populations,
and poses an unprecedented threat to global societies [2].
While significant efforts are being made on the front lines to
detect the virus, provide treatments, and research vaccina-
tions, it is also critical to prevent infection in our daily life.
Handwashing, also known as hand hygiene, is one of the
best ways to prevent infection, as claimed by the WHO [3].

According to guidelines published by the WHO [4],
proper handwashing consists of six stages, which are shown
in Fig. 1. The six stages can be further divided into nine
steps which ensure that every area of the hands is properly
covered. The whole hand hygiene duration should last 20–
30 seconds. Unfortunately, a report by the United States
Department of Agriculture found that up to 97% of people
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Fig. 1: WHO handwashing procedure.

wash their hands incorrectly 1. Therefore, it is important to
monitor and measure hand hygiene adherence.

Over the past decade, many automated hand hygiene
monitoring systems based on various sensing technolo-
gies have been proposed, such as wall-mounted sensor-
based [5], [6], camera-based [7], and radio-based [8]. How-
ever, there exist some drawbacks when they are used in
real-world environments. For example, approaches based
on placing or attaching devices around the sink are lim-
ited by their high installation and maintenance cost be-
cause they need to be installed at each sink. Additionally,
camera-based techniques raise the privacy issue and their
accuracy are highly environment-dependent. In compari-
son, wearable technology provides a continuous and non-
obtrusive way to monitor user’s handwashing activities.
Several automatic handwashing monitoring systems based
on wrist-worn devices have been developed recently [9],

1. https://www.usda.gov/media/press-
releases/2018/06/28/study-shows-most-people-are-spreading-
dangerous-bacteria-around [Online, accessed on Dec 4th, 2022].
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TABLE 1: Comparison of different solutions.

Ubiquity Usability Quality
Assessment Privacy

wall-mounted sensor [12], [13] % % % !

Camera-based [7] % % ! %

Radio-based [8] % % ! !

WashRing ! ! ! !

[10], [11], but their practical accuracy is not satisfactory.
This is because some handwashing steps are very similar
to each other and they only have subtle difference in some
finger movements, which cannot be fully captured by wrist-
worn devices. Moreover, wearable sensors have limited
battery life and continuous handwashing monitoring will
drain battery quickly. Unfortunately, this problem is largely
ignored in existing studies.

Since electronic components are constantly getting
smaller and smaller, wearables are evolving from wrist-
worn to be finger-worn. Recently, smart ring has started to
enter people’s life. Smart ring offers several benefits com-
pared to wrist-worn devices such as smart watch and smart
wristband. On the one hand, smart rings are more com-
fortable to wear both night and day because they are less
obtrusive. On the other hand, smart rings can capture the
minor finger motions and thus are better suited for finger-
level gesture monitoring. Motivated by this, we design the
first smart ring-based hand hygiene monitoring system—
WashRing. As shown in Table 1, WashRing provides a ubiq-
uitous, energy-efficient and highly accurate hand hygiene
monitoring solution compared to existing systems.

1.2 Challenges and Contributions
To achieve the goals above, we need to address several non-
trivial challenges.

Challenge 1: Resource constraint. Smart ring is a
resource-constrained wearable device because of its small
form factor. Although the duration of one-time handwash-
ing is short, people need to wash their hands multiple
times a day. Therefore, continuous sensor sampling will
quickly drain the battery. To address this challenge, we
model the hand washing process as a Partially Observable
Markov Decision Process (POMDP). Then, we propose an
adaptive sampling strategy to balance energy efficiency and
recognition accuracy.

Challenge 2: Variability of handwashing action. Dif-
ferent people have different handwashing behaviors and
even for the same person, non-trivial variations exist during
different times of handwashing activities. Although deep
learning has achieved great success in various recognition
tasks [14], [15], [16], [17], it is often regarded as a blackbox
and requires significant amount of data to train an accurate
model. To address this problem, we design an automatic
feature extraction scheme based on wavelet scattering to
extract discriminative features.

Challenge 3: Impact of different fingers. Different peo-
ple may wear the ring on different fingers, and the sensor
data recorded from different fingers are slightly different
even for the same gesture. Fig. 2 shows the accelerometer
data when the user is performing the same handwashing
action (G6 in Fig. 1). We can see that although the overall
pattern is similar, there are some minor difference. However,
collecting sufficient data to train a model working for all the
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Fig. 2: Acceleration data of different fingers for six gestures.

five fingers is a non-trivial work. To address this challenge,
we adopt the “learn to learn” concept from meta-learning
and formulate the task as a few-shot learning problem to
enable quick system adaptation in a data-efficient manner.

We implement a prototype of WashRing on both off-the-
shelf smart ring and customized ring, and conduct extensive
experiments to evaluate the system performance. Results
show that our system achieves high energy-efficiency and
recognition accuracy. To our best knowledge, WashRing is
the first smart ring-based hand washing monitoring system.
In summary, the contributions of the paper are as follows:

• We propose WashRing, the first smart ring-based
handwashing monitoring system. Compared to state-
of-the-arts, WashRing achieves ubiquitous, energy-
efficient and highly accurate handwashing monitoring.
WashRing bring fine-grained handwashing monitoring
from hospitals to daily life. We hope it can help people
improve their handwashing quality and thus reduce the
chance of infection.

• To achieve high energy efficiency, we model the hand-
washing procedure as a Partially Observable Markov
Decision Process (POMDP) and propose an adaptive
sampling strategy to dynamically adjust sampling ac-
tions to achieve an optimal trade-off between gesture
recognition and device lifetime.

• To achieve fine-grained handwashing monitoring, we
design an automatic feature extraction scheme based on
wavelet scattering which can extract more discrimina-
tive features. Based on the extracted features, we design
a CNN-LSTM based classification model to achieve
highly accurate handwashing gesture recognition.

• To reduce the data collection effort for each finger, we
model the handwashing gesture classification as a few-
shot learning problem and design a few-shot learning
module to rapidly adapt to new finger locations when a
few training samples are available. Our strategy outper-
forms the popular fine-tuning method by up to 15.6%.

• We implement WashRing on both off-the-shelf smart
ring and customized smart ring. We collect a dataset
from 25 subjects over 2 months and conduct extensive
evaluation to investigate the performance of WashRing.
Evaluation results show that WashRing improves clas-
sification accuracy by 10.2%–15.9% compared to state-
of-the-arts and achieves up to 64.2% energy saving with
the proposed energy-efficient sampling strategy.

The rest of the paper is organized as follows. Sec. 2
provides an overview of WashRing. Sec. 3 discusses energy-
efficient data sampling and processing. Then, Sec. 4 presents
the design details of feature extraction, classification model
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Fig. 3: An overview of WashRing.

and few-shot learning module. Sec. 5 presents the evalua-
tion results. Sec. 7 discusses the related work. Finally, Sec. 8
concludes the paper.

2 SYSTEM OVERVIEW

The architecture of WashRing is shown in Fig. 3. WashRing
consists of a smart ring and an edge device (e.g., a smart-
phone). The smart ring is worn by the user on his/her
preferred finger and is used to sample the IMU sensor
during handwashing. A light-weight handwashing detector
is integrated in smart ring to detect whether the user is
washing hand or not. Meanwhile, a POMDP-based sam-
pling strategy is running in background to save battery
life and achieve energy efficiency. Then, the collected data
is transmitted to the edge device via Bluetooth. The edge
device first applies an automatic feature extraction scheme
to extract discriminative features from the sensor data. Then,
the extracted features are fed into a CNN-LSTM classifica-
tion model to achieve fine-grained handwashing analysis.
A few-shot learning module is pre-trained to make sure
the classification model can achieve high performance when
limited training data is available.

Users do not necessarily strictly follow the prescribed
steps, namely, from G1 to G6. Instead, WashRing still works
well when users perform the handwashing gestures in an
arbitrary order. Meanwhile, users do not need to perform
any special gestures to start. WashRing runs a handwashing
activation detection module to detect the start of hand-
washing. The module continuously runs in the background
to monitor the user’s current activities (such as walking,
running, typing, and eating). Once it detects the current
action is handwashing, it will enable the handwashing
classification module to monitor the whole handwashing
process. WashRing will send the continuous sensor data
to the user’s smartphone for fine-grained analysis during
handwashing. In the following sections, we will describe
the design details of each component.

3 DATA SAMPLING AND PROCESSING

3.1 Handwashing Activity Detection
Everyday people perform different kinds of activities, such
as walking, cooking, and cleaning. Therefore, the first step
is to detect handwashing activity to avoid unnecessary com-
putation for non-handwashing activities. Since the number
of non-handwashing activities is numerous, it is hard to
collect a large amount of data for each activity. Therefore, we
design a one-class activity classifier based on Support Vector
Data Description (SVDD) [18]. SVDD is one of the most

well-known support vector learning methods for the one-
class problem. It only requires the data of the handwashing
activity to build a prediction model whose output is posi-
tive (i.e., handwashing) or negative (i.e., non-handwashing).
Moreover, based on the evaluation in Section 5.2, SVDD out-
performs other one-class classifier such as one-class Support
Vector Machine (SVM) and one Class Mini-max Probability
Machine (OCMPM); therefore, we choose SVDD in our
handwashing detection module.

Unlike smartwatch which is always worn on the wrist
with fixed orientation, the smart ring can be worn with
arbitrary orientations. Therefore, we first calculate the am-
plitude of raw accelerometer data which is orientation-
independent: Acc =

√
Acc2x +Acc2y +Acc2z , where Acc2x,

Acc2y and Acc2z represent the linear accelerometer data along
three axes. Then a moving average filter of order 3 is applied
on the acceleration amplitude to remove noise. Afterwards,
continuous accelerometer data is segmented into 1 s slid-
ing windows with 50% overlap. The window size of 1 s
is chosen to balance between classification accuracy and
latency. Wearable sensor-based activity classification is a
well-studied field, and features from both time and fre-
quency domain are widely used to achieve accurate activity
recognition [19]. For computation efficiency, we calculate
six light-weight time domain features: MAX, MEAN, MIN,
VARIANCE, RANGE, CROSS ZERO RATE. These features
are used to train the classifier. The evaluation results in
Section 5.2 show that the designed SVDD classifier can
achieve over 98% handwashing detection accuracy.

Fig. 4: POMDP Sampling strategy.

3.2 POMDP-based Dynamic Sampling Strategy
Continuous sampling sensory data will quickly drain the
battery of smart ring because of its extremely small form fac-
tor. Therefore, it is crucial to improve the energy-efficiency
of WashRing to maximize the device lifetime. In WashRing,
we model the sampling strategy optimization as a POMDP
problem. POMDP provides a formal probabilistic frame-
work for solving tasks involving action selection and de-
cision making under uncertainty [20]. POMDP is a common
technique to model a variety of real-world sequential deci-
sion processes. Although some recent works use deep rein-
forcement learning to solve similar decision problems [21],
[22], deep reinforcement learning is known to be computa-
tionally expensive and require extensive data for training.

The decision making process of the proposed method is
illustrated in Fig. 4. We consider the smart ring and user
as the environment, and the goal of the agent is to find an
optimal sampling policy based on the observations from the
environment. When the agent executes a sampling policy,
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the environment enters a new state. The agent receives an
observation of the new state and a reward. In order to solve
the optimization problem, the agent maintains a belief bt
which is a probability distribution over states of the envi-
ronment. This belief is computed iteratively using Bayesian
inference by the belief state estimator. An action for the
current time step is provided by the learned policy π, which
maps belief states to actions. Although the environment
is changing over time and not fully predictable, the agent
is able to find the optimal sampling policy based on new
observations at each time step. Below we describe the details
of the proposed sampling strategy.

The POMDP model used in our sampling strategy con-
sists of six elements (S,A,O, F,Ω, R), where S, A, O, F , Ω,
R are the state space, action space, observation space, state
transition function, observation function, and the reward
function, respectively. In WashRing, the state at time t is
specified by St = (et, ζt, t), where et is the battery level
of the smart ring at time t, i.e., et = {0, 1, 2, . . . , 100}, and
ζt = {0, 1, 2, . . . , 9, 10} represents the percentage time that
the user is washing hands during the current observation
window whose default value is 10 s. For example, 0 means
the user is not washing hands and 2 means the time of hand-
washing occupies 20% of the current observation window.
The actions are represented byAt = {0, 1, 2, 3, 4, 5}, indicat-
ing the duty cycle of sensor sampling for energy control. For
example, 0 represents no sampling, 1 represents 20% duty
cycling, and 2 represents 40% duty cycling. The observation
at time t is defined as Ot = {0, 1, 2, . . . , 9, 10}, representing
the observed percentage of time during the window that
user is washing hand. The observation are obtained by the
light-weight handwashing detector in Section 5.2.

After defining all these elements, the dynamic process
of handwashing data sampling can be modeled as transi-
tions over a finite set of states. Specifically, we define three
functions: state transition function p(St+1|St, At), observa-
tion function Ω = p(Ot|St, At) and the reward function
R(St, At). The state transition functions p(et+1|et, At) and
p(ζt+1|ζt, t) represent the transition between different sam-
pling strategies and the probability of handwashing activity
during different periods of a day. These two functions can
be learned from the past data. The observation function
p(Ot|St, At) can be calculated as follows:

p(Ot|St, At) = p(Ot|ζt, At) =

(
At
Ot

)
·
(

5 − At
ζt − Ot

)(
5
ζt

) (1)

where the last expression

(
At
Ot

)
·
(

5 − At
ζt − Ot

)
(

5
ζt

) means the prob-

ability of observing Ot given the sampling duty cycle
At and the user’s handwashing level ζt. The goal of the
agent is to maximize the expected sum of future rewards:
maxE[

∑∞
0 γtR(St, At)], where γ ∈ [0, 1] is the discount

factor which determines the weights of immediate reward
and future reward. The reward function used in WashRing
is defined as follows [23]:

R(St, At) =

{
ra − rp et ̸= 0

0 et = 0
(2)

where ra = At · ηt represents the rewards of using high
duty cycles when the user is washing hands, rp =

c·A2
t

et

represents the penalty of using high sampling duty cycles
when the battery level is low, and c is a parameter to adjust
the penalty weights. The reward function is chosen in this
way so that when the battery level is sufficiently high, the
system will be more aggressive to use higher duty cycles,
while when the battery left is low, the sampling strategy
becomes more conservative.

In WashRing, the agent can observe et and t but not
ζt. Therefore, the model must choose actions based on the
history of observations and actions. This information is suc-
cinctly captured by the “belief state”, which is the posterior
probability distribution over states at time t, given past ob-
servations and actions. The states in our system are discrete,
so the belief state is a vector bt whose size is equal to the size
of states. The i-th component of bt is the posterior probabil-
ity of state i: bt(i) = P (st = i|ot, at, ot−1, at−1, . . . , o0, a0)
. The goal of the agent then becomes maximizing the
expected future reward by finding an optimal “policy” π
which maps a belief state bt to an appropriate action at
π(bt) = at.

We use the SARSOP algorithm [24] to solve this opti-
mization problem because of its fast computation speed. At
any time t, the sampling policy is determined by consider-
ing different factors such as current battery level, user’s ac-
tion, and past observations. Therefore, it can achieve a good
balance between fine-grained handwashing monitoring and
battery lifetime.

4 HANDWASHING ACTIVITY CLASSIFICATION

4.1 Automatic Feature Extraction Using Wavelet Scat-
tering
Since the handwashing motions are different from person
to person and even the behaviors of the same person may
change over time, we need to extract robust and low-
variance features from IMU data. In WashRing, we use
wavelet analysis to obtain the time-frequency representation
of handwashing motions. It is based on the observation that
handwashing activity involves many minor and transient
finger motions.

After receiving the data from the smart ring, the edge
device first applies a Butterworth low-pass filter with cut-
off frequency 20Hz to remove noise. Then, suppose the
amplitude of denoised accelerometer data is Acc(t), we
calculate the continuous wavelet transform (CWT) of Acc(t)
as follows:

W (a, b) =
1√
a

∫ ∞

−∞
Acc(t)ψ∗

(
t− b
a

)
dt (3)

where ψ is a mother wavelet function and the symbol ∗
represents the complex conjugate operation, a and b are the
scale and translation parameters, respectively. In WashRing,
we use the Morlet wavelet because it exhibits superior time
localization. After CWT, we can get the CWT coefficients. To
better visualize the time-frequency representation of each
handwashing action, the scalogram which is the absolute
value of the CWT coefficients, is plotted in the second row
of Fig. 5. As we can see from Fig. 5, CWT can provide a time-
frequency representation for each gesture. However, we
notice that the wavelet transform is spread out over a region.
This is due to the fact that any time-frequency transform
that employs filters, such as wavelets, blurs the signal’s
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Fig. 5: Illustration of feature extraction. (1) The first row shows the denoised signal of four gestures. (2) The second row
plots the scalograms. (3) The third row plots the wavelet synchrosqueezed transform. (4) The fourth row plots one feature
vector for each gesture after wavelet scattering.

image in time and frequency. Therefore, we further sharpen
the time-frequency representations using synchrosqueezing
technique [25]. Synchrosqueezing is a time-frequency signal
processing procedure that ”squeezes” the transform along
the frequency axis to compensate for the smearing. The third
row of Fig. 5 plots the synchrosqueezed transform of CWT
for each gesture.

Fig. 6: Workflow of automatic feature extraction scheme.

After obtaining time-frequency representations of hand
gestures, a common way is to directly feed these 2-
dimensional images into a deep convolutional neural net-
work (CNN). However, there are a few challenges to use
CNN directly in the wearable device based handwash-
ing recognition. First, CNN models typically require large
datasets and significant computing resources for training
and evaluation. Secondly, even a well-tuned network can
achieve high accuracy, it is often treated as a blackbox. Thus,
it can be difficult to understand and interpret the features
that are extracted. To address these problems, it is desirable
to first extract discriminative features and then feed these
features into a CNN model. However, traditional feature
engineering requires a large amount of empirical experience
and work. To this end, we design an automatic feature
extraction scheme based on a wavelet scattering framework.

A wavelet scattering transform builds translation invari-
ant, stable, and informative representations from the input
signal. As shown in Fig. 6, our wavelet scattering frame-
work consists of three stages: wavelet transform, nonlinear
modulus, and averaging. First, we perform a traditional con-
volution to generate a locally translation invariant feature of
input signal; however, this step loses high-frequency infor-
mation. In step two, the lost high-frequency information is
recovered by a wavelet modulus transform. Finally, we av-
erage each of the moduli with the scaling filter to obtain the
first-order scattering coefficients. By repeating this process,
we can obtain a feature matrix which aggregates scattering

coefficients of all orders to describe the features of input
signal. For the technical details of wavelet scattering, the
readers are encouraged to referred to [26], [27].

Our designed wavelet scattering framework includes
two layers whose wavelets per octave are 8 and 1, respec-
tively. We use Morlet wavelet and set the invariance scale to
20. For segmented handwashing gestures, we further divide
them into 0.3 s time windows with 50% overlap. Then for
each window, we calculate its wavelet synchrosqueezed
transform and feed the transform into the wavelet scattering
network, which will output a tensor feature matrix with the
size of 55 × 51 × 45. The forth row of Fig. 5 plots a single
feature vector extracted from each gesture, it is evident
that they are more discriminative compared to the original
scalogram in the second row.

Fig. 7: Classification model.

4.2 Classification

The framework of the classification model is shown in Fig. 7.
Concretely, the feature matrix extracted in the last section
first passes through a convolution layer to extract the local
features. The filter size and kernel size are 128 and 5 × 5,
respectively. Then, the results are fed into three BiLSTM
layers to mine the overall variation trends of the features. We
employ BiLSTM because it has a high degree of adaptability
to time series data, and the bidirectional learning process
not only learns the characteristics of the forward time flow,
but also learns the reverse time flow. However, the standard
BiLSTM cannot detect which part is necessary to identify
the features of the fine-grained handwashing gestures. In
order to solve this problem, we add an attention scheme that
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can capture the key information of the input handwashing
gesture characteristics. The attention scheme is used to sim-
ulate the way of thinking of the human brain, that is, giving
high attention to important information and low attention
to unimportant information. Finally, the output is mapped
into ten gesture classes via a fully connected layer with
ten units and a softmax function. The reason we have ten
classes is that we notice people have their own handwashing
habits which are unofficial. Therefore, in addition to the nine
official gestures defined by the WHO, we add the tenth class
“Other gestures”.

4.3 Few-shot learning module

As mentioned earlier, the IMU signals collected from differ-
ent fingers are slightly different and our evaluation results
in Sec. 5.4 also demonstrate that the model trained from one
finger has poor performance for other fingers. To reduce the
data collection effort for each finger, we design a few-shot
learning module to enable fast system adaptation for new
finger locations.

Problem Formulation. Few-shot learning aims to build
a robust deep learning model when the dataset contains
limited information. It adopts the “learn to learn” concept
and uses prior knowledge to rapidly generalize to new tasks
containing only a few samples. In WashRing, we formulate
the problem as follows. We have two datasets: a source
dataset Ds and a target dataset Dt. The target dataset can
be further divided into two sets: a support set and a query
set. Note that the support set and query set share the same
label space but are disjoint with each other. In our problem,
the source dataset Ds contains sufficient data from a few
fingers (e.g., index finger), the support dataset contains
limited data from other fingers (e.g, all the fingers except
the index finger). Therefore, the source dataset and target
dataset share the same label space. We adopt this setting
because the meta learning process can effectively leverage
the common knowledge in the same label space [28]. With
the above definitions, our goal is to use source dataset to
train a classifer f that can quickly adapt to the recognition
task in the query set based on the limited samples in the
support set. If the support set contains K labelled examples
for each of C unique classes, it is called C-way K-shot
problem.

Meta-training. During meta-training, we generate a set
of tasks T from Ds. Each individual subtask Ti ∈ T is
formulated by randomly picking C classes with K labelled
samples to act as the support set STi = {(X,Y )}m(m =
K × C) and the other samples serve as the query set
QTi = {(X,Y )}. This support/query set split in Ds is
designed to simulate the support/query set that will be
countered inDt. The classifier f is randomly initialized with
parameters θ0 and then trained by all the subtasks Ti ∈ T .
The parameters are updated by the method proposed in
MAML [29]. For each subtask Ti, a new task-specific pa-
rameters θ′Ti

is learned via gradient descent:

θ′Ti
= θ0 − α∇θLTi

(fθ0 , STi
)

where α is a hyperparameter and LTi
(fθ0 , STi

) is the Ti-
specific cross-entropy loss which is defined as

LTi (fθ, STi) =
∑

(xj ,yj)∈STi

yj log fθ (xj) + (1− yj) log fθ (1− xj)

After obtaining all the task-specific parameters θ′
Ti

, we
define a meta-objective function as follows:

argmin
θ

∑
Ti∈T

LTi

(
fθ′

Ti

)
This objective function is designed to find parameters θ that
can minimize the sum of all the task losses. The parameters
θ can be obtained by minimizing the objective function via
stochastic gradient descent (SGD):

θ ← θ − β∇θ

∑
Ti∈T

LTi

(
fθ′

Ti

)
where β denotes the meta learning rate.

Adaptation. After the above meta-learning stage, a clas-
sifier fθ′ with good parameter initialization θ′ is trained
from source dataset Ds. When deploying fθ′ on target
dataset Dt, the new parameters θt can be learned after a few
gradient descent steps as: θt ← θ′ − α∇θLDt

(fθ′) . Finally,
the output of the few-shot learning module is a classifier fθt
that can achieve good performance on the target dataset Dt

where each class only contains a few samples.

5 EVALUATIONS

5.1 Goals, Metrics, and Methodologies

In this section, we conduct extensive evaluation to eval-
uate the performance of WashRing. The goals of evalu-
ation are fourfold: 1) to evaluate the individual compo-
nents of WashRing; 2) to evaluate the overall classification
accuracy of WashRing in different conditions; 3) to com-
pare WashRing with state-of-the-art handwashing monitor-
ing systems; 4) to evaluate the resource consumption of
WashRing.

Prototype. The WashRing system consists of two com-
ponents: a smart ring and an edge device. As shown in
Fig. 8 we implement WashRing on both commercial OURA
smart ring and a custom-built smart ring. OURA smart
ring is equipped with Bluetooth Low Energy (BLE), 3-axis
accelerometer and gyroscope. OURA weighs in at only 6 g
with a width of 8mm and a thickness of 2.55mm. Moreover,
OURA smart ring is water resistant, so users can wear
it during handwashing. Since OURA smart ring does not
provide any method to measure energy consumption, we
build a customized smart ring. The customized ring is based
on DA14583 chipset which includes a BLE chip, a 3-axis
accelerometer and gyroscope chip, and a 3-axis magnetome-
ter chip. The size of the ring is 19mm × 15mm × 25mm
and the weight is approximately 7 g in total, including a
1.7 g sensor board and a 5.3 g ring structure. Because the
customized ring is not water-proof, the data collection is
conducted by OURA ring while the energy profiling is
performed on the customized ring. In our future work, we
will design a water-proof customized ring to ensure all the
experiments are conducted on the same hardware platform.
For the edge device, we use Samsung S10 smartphone which
is equipped with a 2.84 GHz Snapdragon CPU. The deep

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3227299

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on April 20,2023 at 05:54:54 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Fig. 8: Prototypes.

Samsung S10 smartphone

OURA smart ring

HUAWEI smartwatch

Fig. 9: Data Collection.

Property Value
Subjects 25 (14 males, 11 females )

Age 18-46
Height 155-182 cm
Weight 58-93 kg

Sessions 2
Hand locations 6 left+9 right
Finger locations 5

Sample frequency 100 Hz

TABLE 2: Dataset information.

learning model is implemented based on Pytorch Mobile
framework.

Data Collection. The process of data collection is illus-
trated in Fig. 9. During data collection2, we first show the
volunteers a short video of correct handwashing techniques
provided by WHO 3. Then, we ask them to wear the smart
ring on one of their preferred hands. Six of them choose to
wear the ring on their left hand while the others wear it
on their right hand. Meanwhile, different people may wear
the ring on different fingers, thus we ask the volunteers to
repeat the whole handwashing process on each of the five
fingers so that we have the data for all the locations. In
order to compare the wrist-worn devices based solutions,
we also ask the volunteers to wear a HUAWEI smartwatch
on the same hand so that we can obtain the data from both
fingers and wrist. Each participant was asked to perform
the whole handwashing process multiple times so that we
have enough data for evaluation. We also ask the volunteers
to perform their own handwashing actions which are not
the same as the nine official gestures. These data will be
regarded as the tenth class “O” (others).

To obtain the ground-truth, we set up a smartphone
which is used to record the handwashing process. The
data is collected by smart ring and then transmitted to the
smartphone. By synchronizing the timestamps of the sensor
data and the recorded video, we can obtain the ground-truth
of each gesture. Because the handwashing behavior of the
same person may change slightly overtime, we record two
independent sessions for each person. The time intervals
between these two sessions vary from 1 to 2 months. The
original sampling rate of the data is 100Hz. In total, we
collected approximately 67,500 hand gestures which is 37×
larger than the private dataset used in RFWash [8]. More
details of the dataset are summarized in Tab. 2.

Metrics and Methodology. Unless otherwise stated, the
default training and testing process is as follows. We ran-
domly divide the whole dataset into three parts: training
set (70%), validation set (15%), and test set (15%). We report
the average result from 10 runs. We use the following four
commonly used metrics: accuracy, precision, recall, and F1-
score, which are defined as follows.

• Accuracy. Accuracy is the number of correct classifica-
tions divided by the number of total classifications. It
is a useful metric only when the dataset has an equal
distribution of classes.

• Precision. Precision is the number of true positives
divided by the number of total positive predictions. It

2. Ethical clearance has been obtained to carry out this experiment.
3. https://www.youtube.com/watch?v=IisgnbMfKvI [Online, ac-

cessed on Dec 4th, 2022]

measures the model’s accuracy in classifying a sample
as positive.

• Recall. Recall is the number of positive samples cor-
rectly classified as positive divided by the total number
of positive samples. It measures the model’s ability to
detect positive samples.

• F1-score. F1-score is a metric that combines the preci-
sion and recall metrics into a single metric, which is
defined as F1 = 2×precision×recall

precision+recall . It is a useful metric
when evaluating on imbalanced data.

The benchmarks used in the evaluation are three state-
of-the-art handwashing monitoring systems: Harmony [9],
Wristwash [10], and AWash [11].

(a) Impact of window size

(b) Impact of sampling rate

Fig. 10: Results of handwashing detection.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3227299

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on April 20,2023 at 05:54:54 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING 8

(a) Different hands (b) Different fingers (c) Different gestures
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Fig. 11: Accuracy of WashRing under different settings.

5.2 Handwashing Detection

To evaluate the performance of handwashing detection, we
use OURA smart ring to collect over 2 hours data from non-
handwashing activities, including walking, running, clean-
ing, toothbrushing, and cooking. We also compare SVDD
with other commonly used one-class classifiers, including
one-class SVM and one Class Mini-max Probability Machine
(OCMPM). Fig. 10(a) and Fig. 10(b) show the performance
of different methods under different window sizes and
sampling frequencies, respectively. Fig. 10(a) shows we can
achieve higher detection accuracy with longer window size
because we can obtain more information. However, longer
window size makes the detection module less responsive.
The window size is set to 1 s in WashRing to balance the
accuracy and execution time. Fig. 10(a) shows the accuracy
of detection increases with higher sampling frequency, and
it reaches 98.7% when over 50Hz is used. However, higher
sampling frequency consumes more energy. In practice, the
sampling rate is dynamically adjusted by the sampling strat-
egy which will be evaluated in Sec. 5.6. Both Fig. 10(a) and
Fig. 10(b) show SVDD achieves higher accuracy compared
to one-class SVM and OCMPM; therefore, we choose SVDD
as the classifier in handwashing detection.

5.3 Overall Performance

In this subsection, we evaluate the performance of
WashRing under different conditions. Specifically, we ana-
lyze the accuracy of handwashing gestures when the user
wears the ring on different fingers and different days.

5.3.1 Performance of different locations

In this experiment, we perform an in-depth analysis of
different locations of smart ring. First, we analyze the impact
of hand, i.e., we aim to examine whether the accuracy is
different if users wear the ring on different hands. To this
end, we train the model with data from both hands but
divide the test set into two parts: left-hand dataset and
right-hand dataset. From the results in Fig. 11(a), we can see
that the accuracy of different hands are very close to each
other. Therefore, although different people have different
preferences of wearing the ring on left hand or right hand,
it has little impact on classification accuracy.

Next, we investigate the impact of different fingers. Same
as above, we train the model with data from five fingers and
divide the test set into five parts: thumb, index finger, mid-
dle finger, ring finger and little finger. Then, we calculate the
accuracy of each test set. As shown in Fig. 11(b), WashRing

can accurately recognize handwashing actions regardless of
the locations of the smart ring.

We now examine the accuracy of recognizing different
gestures. Fig. 11(c) shows the accuracy of all the gestures.
We notice that the accuracy of G2, G3, and G4 is relatively
low. After investigating the results, we find out that G4 (rub
between fingers) is mostly misclassified as G2 (rub the back
of left hand) or G3 (rub the back of right hand) because these
steps are very similar4. Nevertheless, the overall average
accuracy is up to 97.8%.

Based on the recognition results, we further evaluate
the accuracy of estimating the duration of each gesture
sequence. For example, if the user performs G1 for 6.3 s but
the total time of G1 obtained by WashRing is 6.6 s, then the
error is 0.3 s. As the results in Fig. 11(d), WashRing can accu-
rately estimate the duration of each gesture. Specifically, the
average timing error of WashRing is 0.35 s. In comparison,
the timing error of a state-of-the-art wireless sensing based
hand washing system RFWash varies from 0.49s to 1.88s
depending on the sequence length [8]. Therefore, WashRing
outperforms RFWash in estimating the duration of gestures
by 1.4–5.4×.

5.3.2 Unseen Scenarios
In this subsection, we evaluate the performance of
WashRing in unseen scenarios, which include unseen sub-
jects and unseen sessions. We leave the discussion of new
finger locations in the next subsection.

Unseen Subjects. In order to understand how the system
performs for unseen subjects, we conducted a standard
leave-one subject-out cross validation. Specifically, the data
of one subject is excluded from the training process. Then
we use this subject’s data as testing set to evaluate the
accuracy of the trained model. We repeat this process for all
the 25 subjects and plot the average results in Fig. 12(a). We
can see that the accuracy for unseen subjects is comparable
to that of seen scenarios (the same subject’s data are used
in both training and testing), indicating WashRing has good
generalization ability for new users.

Unseen Sessions. People’s handwashing behaviors may
change slightly over time. To understand how the system
performs for data collected at different time, we use the
Session 1 dataset for training and use the Session 2 dataset
for testing (note Session 2 is collected 1–2 months after
Session 1). From the results in Fig. 12(a), we can see there is
no significant difference between seen sessions and unseen

4. If the ring is on right hand, then G4 is similar to G2. Otherwise, G4
is similar to G3.
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(a) Unseen subject and time

(b) Unseen Fingers

Fig. 12: Unseen scenarios.

sessions, indicating WashRing is robust to the variations of
handwashing behaviors over time.

5.4 Evaluation of few-shot learning module

In order to understand whether the model trained on one
finger can be used to recognize gestures on another finger,
we conduct a leave-one finger-out cross validation and
compare it with the case where all the fingers’ data are
used in training. Fig. 12(b) shows that WashRing can achieve
high accuracy when data from all the five fingers are used;
however, the accuracy degrades significantly when the data
of one specific finger is unavailable, especially the thumb.
This can be explained by the fact that the location of thumb
is far way from the other fingers and thus the motions are
more different.

We now evaluate if the designed few-shot learning mod-
ule can improve accuracy when we only have a few samples
for some fingers. As discussed in Sec. 4.3, we formulate the
recognition task as C-way K-shot classification problems,
where C is the number of classes (i.e., 10 in WashRing)
and K is the number of shots (i.e., number of samples
available for each gesture). To investigate how many fingers
are required to achieve satisfactory accuracy, we conduct
a leave-M finger-out experiment, where M can be 1, 2, 3,
4. For each M , we assume there are C ′ instances available
which make C = C ′ ×M . To demonstrate the superiority
of our method, we also compare it with a common transfer
learning strategy, namely fine-tuning. In this experiment, we
set the hyperparameters α and β to be 0.01 and 0.001, and
set C ′ to 1, 5, and 10, respectively. We calculate the results
of different methods after 10 iterations.

From the results in Tab. 3, we can see that our method
outperforms the fine-tuning method in all scenarios. If only

TABLE 3: Performance of few-shot learning module.

C’=1 C’=5 C’=10
WashRing Fine-tuning WashRing Fine-tuning WashRing Fine-tuning

M=1 86.3 78.2 89.4 81.3 92.3 86.6
M=2 72.1 65.7 83.2 77.6 90.7 81.5
M=3 65.7 58.4 74.6 65.2 88.4 76.3
M=4 55.6 38.1 68.7 60.8 86.5 70.9

one finger’s data is available (i.e., M = 4), by collecting
10 samples from each of the other four unseen fingers, we
can achieve 86.5% accuracy which is 15.6% higher than fine-
tuning strategy. It is worth mentioning that collecting 10
samples only requires 3 s because the window size of each
sample is 0.3 s. If we have data from four fingers (i.e., M=1),
the accuracy can be improved to 92.3% by collecting 3 sec-
ond’s data from the unseen finger. Therefore, by collecting
data from a few fingers only, our few-shot learning module
can enable quick system adaptation and achieve reasonably
good performance by collecting small-scale samples from
unseen fingers.

5.5 Comparison with state-of-the-arts

(a) Accuracy of different fingers

(b) Accuracy of different gestures

Fig. 13: Comparison with state-of-the-arts.

In this subsection, we compare WashRing with
four state-of-the-art wearable-based handwashing systems,
namely, Harmony [9], Wristwash [10], and AWash [11]. The
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TABLE 4: System overhead (per gesture frame).

Computation
time (ms)

Energy
consumption (mJ)

Smart
ring

Sampling - 0.45
Handwashing detection 11.3 1.2

POMDP sampling control 35 22
Data transmission 2.4 0.013

Total 48.7 ≈ 23.6

Edge
device

Feature extraction 31 32
Classification 146 126.3

Data transmission 2.1 0.024
Total 179.1 ≈ 158

performance of each system is fine-tuned to achieve the best
performance on our dataset. Specifically, for Harmony, the
decision tree classier is used and the window size is set
to 0.2 s. For Wristwash, a Hidden Markov Model (HMM)
classifier with 10 states is used and the window size is set to
0.12 s. For AWash, the hybrid model is set to have 128 cells
and three LSTM layers.

Fig. 13 shows the accuracy of different methods on
different fingers and gestures. We can see that WashRing
continuously achieves the best performance among all the
methods. On average, the accuracy of WashRing is 10.2%
higher than AWash, 13.8% higher than Harmony, and 15.9%
higher than WristWash. For different fingers, our method
improves accuracy by 9.1–20.2%. For different gestures, our
method improves accuracy by 8.9–18.2%. The accuracy of
Harmony and Wristwash is significantly lower because they
are based on smartwatch and traditional machine learn-
ing classifiers. AWash achieves better accuracy than Har-
mony and Wristwash because of the use of deep learning
model to extract features, but its accuracy is still lower
than WashRing. These smart-watch based methods can-
not achieve fine-grained gesture sensing because the wrist
movements of some handwashing gestures are very similar,
such as G1 and G8, G2 and G4. In contrast, WashRing can
distinguish these minor difference by monitoring the fine-
grained movement of fingers. Moreover, WashRing can be
used by most people while AWash is specially designed
for the elderly people with dementia. Therefore, WashRing
provides a highly accurate and ubiquitous handwashing
monitoring solution.

5.6 Evaluation of Sampling Strategy
In this subsection, we analyze the energy consumption of
the propose system. WashRing includes two parts: a smart
ring and an edge device. We implement the data sampling,
handwashing detection, and POMDP sampling strategy on
the customized ring. For the edge device, we use Samsung
S10 smartphone which is equipped with a 2.84 GHz Snap-
dragon CPU and the Android 9.0 OS. The deep learning
model is implemented based on Pytorch Mobile framework.
As the results in Tab. 4, the total processing time on the ring
and edge device is 49.7ms and 87.1ms, respectively. As the
window size of each gesture frame is 0.3 s, our system can
achieve real-time handwashing monitoring.

Tab. 4 shows the processing time and energy consum-
mation of the smart ring and edge device. We can see
the total processing time on the ring and edge device is
48.7ms and 179.1ms, respectively. As the window size of
each gesture frame is 0.3 s, our system can achieve real-
time handwashing monitoring. Next, we analyze the energy
saving ability of the proposed sampling strategy. We use

(a) Sampling strategy execution (b) Comparison with other strate-
gies

Fig. 14: Evaluation of sampling strategy.

the POMDP simulation tool [24] to simulate the handwash-
ing activities during a 24 hours period and compare the
proposed adaptive sampling strategy with fixed sampling
strategy. As shown in Fig. 14(a), our system keeps running at
low duty cycles when the probability of handwashing is low.
Once a handwashing activity is detected, our system starts
to runs at higher duty cycle and turns into low duty cycle
mode when the handwashing activity is over. The results of
different sampling strategies are shown in Fig. 14(b). We
can see that although using 20% duty cycle can achieve
low energy consumption, its gesture recognition accuracy
decreases to 83%. Our method can achieve comparable
recognition accuracy with 80% duty cycle but reduces en-
ergy consumption by 62.4%. Overall, our sampling strategy
can efficiently balance the energy consumption and hand-
washing activity monitoring. The amount of energy savings
depends on the frequency of handwashing activities. It is
recommended by WHO that people wash their hands 6–10
times per day. In this case, our sampling strategy can save
energy by 34-56% compared to 80% duty cycling and 17%-
28% compared to 50% duty cycling.

We now analyze the impact of energy consumption
on smart ring. Suppose our customized smart ring uses
the same battery as the OURA smart ring, whose battery
capacity is 22mAh (285.12 J). Then, the energy cost of
WashRing amounts to 0.83e−4 of the total energy supply.
With only 5% of the battery budget (14.256 J), WashRing
is able to classify approximately 600 handwashing gestures
per day. These results demonstrate that WashRing incurs a
low system overhead.

5.7 User Study
To further evaluate the effectiveness of WashRing, we re-
cruited two participants (one male and one female) and
conducted a user study in real-world environments. We
asked them to wear a smart ring on their preferred fingers
and install our app on their smartphones. After pairing the
smart ring with their smartphones, we asked them to use
our app for one week. Every time after they wash their
hands, our app will provide them a summary report, no-
tifying them which steps are missing, and the time spent on
each step. The two participants did not attend the previous
data collection, so we can treat them as new users.

We compare their handwashing behaviors before and
after using our system. Fig. 15(a) shows the changes of
users’ handwashing statistics. It is evident that both users
established good handwashing behaviors after using our
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APP for one week. For example, the handwashing process
of user 1 does not include G4, G5 and G6 before testing,
but after one week, the user starts to conduct G4, G5
and G6. Meanwhile, incorrect handwashing actions (i.e.,
others) also decrease significantly. Moreover, the total time
of handwashing increases from 26.8 s to 47.54 s. We can see
the similar changes on user 2 as well. To be specific, the
proportion of incorrect handwashing actions decreases from
22.53% to 10.24%. The total time of handwashing increases
from 22.19 s to 45.62 s. It is evident that WashRing helps
users establish good handwashing behaviors in practice.

To further evaluate the acceptance of WashRing in real-
world applications, we conducted a user survey. We invited
42 volunteers to participate in the survey, of which 24 are
male and 18 are female, aged between 20 and 53 years
old. The volunteers were first asked to watch a demo of
WashRing and the WHO handwashing guidelines. Then,
they wore an OURA smart ring on their preferred fingers
and washed their hands for five times at different times
of a day. Finally, our smartphone app will display the
results to them after which they complete the survey based
on their experience. The survey consists of five questions
which ask the users to rate WashRing in terms of accuracy,
user friendliness, ubiquity, privacy, and usability. As shown
in Fig. 15(b), the scores of each question are 4.62 ± 0.33,
4.75 ± 0.21, 4.83 ± 0.26, 4.92 ± 0.13, and 4.82 ± 0.23,
respectively. The score of accuracy is relatively lower than
others probably because the volunteers do not adapt to the
WHO handwashing guidelines in the short survey time.
We believe, however, after using WashRing for a longer
time, their hand hygiene can be improved significantly as
demonstrated in Fig. 15(a). Overall, the results demonstrate
the high effectiveness and acceptance of WashRing in real-
world applications.

6 DISCUSSION

In this section, we discuss two issues related to the practical
use of the proposed system.

Ring on or off? There is a debate in the medical commu-
nity regarding whether one should take off the ring when
they are washing hands. Several studies [30] have shown
that skin underneath rings is more heavily colonized than
comparable areas of skin on fingers without rings. However,
several other studies also reported that there is no direct re-
lationship between wearing rings and wearing no rings. For
example, among 60 volunteers from perioperative personnel
and medical students, a group of researchers [31] found
no significant difference in bacterial counts on hands with
or without rings when an alcohol product was used. Two
other studies [32], [33] also found that mean bacterial colony
counts on hands after handwashing were similar among
individuals wearing rings and those not wearing rings.
Therefore, whether the wearing of rings results in greater
cross-transmission of pathogens remains unknown [34]. De-
spite different opinions, it is still strongly encouraged to
take off rings when people wash their hands. However, it
is hard to practically remove our rings every time we wash
our hands, especially in public places such as workplaces
and shopping centers. To sum up, although it is encouraged
to take off rings during handwashing, considering the fact

(a) Handwashing activities before/after using WashRing

(b) Results of user survey: 1–very low, 2–
low, 3–medium, 4–high, 5–very high.

Fig. 15: User study.

that many people still wear rings in many public places, our
system has great potential to be used in people’s daily life
to improve their hand hygiene practices.

Contact or contactless? As discussed in Section 1, com-
pared to contactless solutions (e.g., camera-based and radio-
based), the proposed system is more accurate, cost-effective,
and has no privacy issues. Despite these advantages, one
concern is the requirement to wear rings on the user’s
fingers because the smart ring is not widely used nowa-
days. However, we believe that as its counterparts, such
as smartphones and smartwatches, smart rings will become
increasingly popular, and many people may wear a smart
ring in their daily life soon. Therefore, compared to contact-
less solutions, our solution is more accurate, inexpensive,
and ubiquitous, providing an alternative method to improve
personal hygiene.

7 RELATED WORK

This section discusses two aspects of related work: hand-
washing monitoring techniques and energy-efficient wear-
able sensing.

7.1 Handwashing monitoring
Hand hygiene is a critical activity in preventing the spread
of virus infections and hence attracts considerable atten-
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tion in the past decade. Existing automated hand hygiene
monitoring systems can be classified into the following
four catogories: wall-mounted sensor-based, camera-based,
radio-based, and wearable-based.

Wall-mounted sensor-based. Many hand washing mon-
itoring systems based on various wall-mounted sensors
have been proposed. Marra et al. [12] installed an elec-
tronic handwash counter on dispensers of alcohol-based
hand rub to monitor hand hygiene compliance. Kinsella et
al. [13] developed a recording system that is equipped with
pressure sensor to record depressions of soap and alcohol
gel dispensers. Rabeek et al. [35] proposed an automated
hand hygiene documentation and reminder system based
a variety of sensors including vibration sensor, pressure
sensor, and infrared sensor. However, these solutions can
count the number of handwashing activities or the usage of
washing dispenser only.

Camera-based. Since the wall-mounted sensors cannot
provide fine-grained information about handwashing, re-
searchers started to use camera to monitor hand hygiene
compliance. Llorca et al. [7] proposed a camera-based hand
hygiene monitoring system. Each sink is equipped with a
camera which is used to record the handwashing activitity.
Then, both appearance and motion features are extracted
from the images and fed into a SVM classifier to obtain the
gesture label. However, vision-based solutions have a num-
ber of limitations, such as privacy violation, environment-
dependent accuracy, and high deployment cost. Although
the privacy issue can be mitigated by using depth cam-
era [36], [37], the captured images can still reveal a person’s
precise visual appearance, which may be used to breach
his/her privacy.

Radio-based. Pineles et al. [38] proposed a handwashing
monitoring system based on RFID technology. Khamis et
al. [8] proposed a weakly supervised hand hygiene as-
sessment system based on mmWave radar. These solutions
provide contact-free handwashing monitoring and does not
reveal user’s privacy, but they still need to be installed
in each sink which incur high deployment and mainte-
nance expenses. Additionally, they cannot achieve ubiqui-
tous handwashing monitoring in our daily life.

Wearable-based. Wearable devices provide a convenient
way to monitor people’s activities in a ubiquitous en-
vironment. Our work is closely related to Harmony [9],
WristWash [10], and AWash [11], all of which are based
on wrist-worn devices. Specifically, Harmony [9] uses data
from a smartwatch’s accelerometer and gyroscope as in-
put and employs the decision tree classifier to recognize
different handwashing actions. WristWash [10] uses 6-axis
Inertial Measurement Unit (IMU) data as input and em-
ploys the hidden Markov model-based method to monitor
handwashing process. AWash [11] is a smartwatch-based
handwashing monitoring system specially designed for the
Elderly with Dementia. AWash uses a hybrid deep learning
model to extract user-independent features and designs a
state machine to provide customize assistance for those with
diverse cognitive impairments.

However, wrist-worn devices cannot capture the minor
difference between different fingers when the user is wash-
ing hand. In comparison, WashRing can achieve higher clas-
sification accuracy based on finger-worn wearable device—

smart ring. The evaluation results show that WashRing
improves classification accuracy significantly compared to
these methods. Moreover, these works do not consider
the energy constraint issue of wearable devices. WashRing
addresses this issue by proposing a POMDP-based adaptive
sampling strategy.

7.2 Energy-efficient Wearable Sensing
Continuous sensor sampling is a power-intensive process
for resource-limited wearable devices. As a result, lowering
sensing power consumption without reducing sensing accu-
racy is a key factor to consider. In this subsection, we discuss
the related studies that aims to reduce energy consumption
in wearable sensing applications.

Some energy-efficient sampling approaches are based
on dynamic sensor selection. For instance, Wang et al. [39]
proposed a hierarchical sensor selection strategy that can
dynamically determine a minimum set of sensors to reduce
power usage. Their method not only recognizes user ac-
tivities but also detects state transitions. Another line of
research focuses on reducing sensing energy consumption
by adaptive sampling. Krause et al. [40] studied the trade-off
between decreasing the sampling frequency of accelerome-
ter and activity classification accuracy. Their findings show
that by optimizing duty cycles, the lifetime of a wearable
device can be increased by four times without sacrificing
prediction accuracy.

Through the analysis above, we found that although
a variety of energy-efficient sampling methods have been
proposed for human activity recognition, there is no re-
lated study on smart ring-based handwashing monitoring.
Compared to conventional activities such as walking and
running, different handwashing actions are hard to dis-
tinguish, which make energy-efficient handwashing mon-
itoring challenging. To solve this problem, we model the
sampling strategy optimization as a POMDP problem. Eval-
uation demonstrates the proposed method can save energy
significantly while maintaining high recognition accuracy.

8 CONCLUSIONS

In this paper, we propose an accurate and energy-efficient
handwashing monitoring system based on smart ring—
WashRing. WashRing uses an adaptive sampling strategy
to achieve energy-efficiency. Then, by using an automatic
feature extraction scheme and a CNN-LSTM classification
model, WashRing achieves fine-grained handwashing ges-
ture recognition. Moreover, WashRing can achieve high
recognition accuracy for different fingers based on a few-
shot learning model. Extensive evaluation results show that
WashRing outperforms state-of-the-art handwashing mon-
itoring systems and can save energy consumption signif-
icantly. Overall, WashRing provides an ubiquitous, highly
accurate and energy-efficient handwashing monitoring so-
lution. It has great potential to be used in our daily life to
improve our handwashing quality and prevent the spread
of virus infections.
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