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The vast demand for diverse applications raises new networking challenges, which have encouraged the
development of a new paradigm of Internet of Things (IoT), e.g., LoRa. LoRa is a proprietary spread spectrum
modulation technique that provides a solution for long-range and ultra-low power-consumption transmission.
Due to promising prospects of LoRa, significant effort has been made on this compelling technology since
its emergence. In this article, we provide a comprehensive survey of LoRa from a systematic perspective:
LoRa analysis, communication, security, and its enabled applications. First, we summarize works focusing on
analyzing the performance of LoRa networks. Then, we review studies enhancing the performance of LoRa
networks in communication. Afterward, we analyze the security vulnerabilities and countermeasures. Finally,
we survey the various LoRa-enabled applications. We also present comparisons of existing methods, together
with insightful observations and inspiring future research directions.
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1 INTRODUCTION

The rapid growth of IoT in past decades has witnessed the explosion of applications in a wide range
of fields with respect to smart city [176], industry [34], agriculture [19], and so on. IoT thrives
on a variety of wireless communication technologies, such as short-range wireless standards
(e.g., Zigbee, Bluetooth) and cellular technologies (e.g., 4G, 5G). However, in the face of the future
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Fig. 1. Comparison with legacy wireless com-
munication technologies.

Fig. 2. Number of papers with years through Google
Scholar hits for “LoRa” and “LPWAN” keywords.

demand for tens of billions of IoT access, these legacy wireless technologies are limited by com-
munication range and energy consumption. In this context, such long-range and energy-efficient
communication demands have inspired the emergence of Low Power Wide Area Networks

(LPWANs) as a new IoT new paradigm, which fills the gap of legacy wireless communication
technologies (see Figure 1). Among which, LoRa, due to its open-source privilege (operating in
the unlicensed sub-GHz ISM band) and low-cost Commercial Off-The-Shelf (COTS) devices
compared with other LPWAN technologies such as NB-IoT and SigFox, shows great potential in
industry and research communities recently.

LoRa is a proprietary spread spectrum modulation technique on the basis of Chirp Spread

Spectrum (CSS), which is resilient and robust against interference and noise. Such modulation
technique and a high sensitivity offered by LoRa enable receiving the potential weak signals at ex-
tremely low energy consumption, which provides significant link budget improvement to support
a wide coverage [94]. LoRaWAN is a data link layer specification built on top of LoRa, defining
the typical stat-topology network architecture and its bi-directional communication protocol. To
date, LoRa networks have been deployed by 163 LoRaWAN network operators across 177 coun-
tries globally [76], widely distributed in various applications scenarios that require large-scale and
delay-insensitive deployment [19, 21, 34, 176]. In the research community, an intuitive fact is that
nearly 1,000 papers involving LoRa in their contents were published during 2021 through Google
Scholar hits for the “LoRa” keyword (see Figure 2).1

Due to large-scale deployments and promising prospects of LoRa, extensive works on LoRa
have been presented since its appearance. Accordingly, such fact motivated several survey papers
[56, 85] on LoRa in the recent six years. In particular, some early surveys [22, 62, 146] gave an
overview of LoRa with an emphasis of preliminary background and principle introduction, which
laid a foundation for follow-up research. A small portion targeted specific areas such as testbed
[103], simulator [32], security [114], and mesh topology [29]. Recently, several comprehensive
surveys of LoRa [56, 85] were proposed. For example, Gkotsiopoulos et al. [56] focused on the
network capacity from five main aspects, encompassing PHY layer characteristics, deployment
and hardware features, transmission settings, MAC protocols, and application requirements. Li and
Cao [85] gave a comprehensive and structured survey of LoRa from a two-dimensional taxonomy:
networking layers (i.e., PHY, MAC, Link, and Application layer) and performance metrics (i.e.,
range, throughput, energy, and security). However, many LoRa methods typically do not show a
clear boundary on the networking layer level but span multiple ones.

1Due to the huge number of references about LoRa, this survey only focuses on the papers published at top conferences or
journals, coupled with highly influential ones.
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Table 1. Summary and Comparison with Prior LoRa Surveys/reviews

Survey Year
LoRa Analysis LoRa Communication LoRa Security LoRa-Enabled Applications

Perf. Meas. Anal. Models Simulators Testbeds Modem MAC Protocol Config. V. & C. PLS Backscatter Sensing WCE & CTC Others

[22] 2016 ◗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
[103] 2017 ● ❍ ◗ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
[62] 2018 ● ● ● ◗ ❍ ◗ ◗ ◗ ❍ ❍ ❍ ❍ ●
[146] 2019 ● ◗ ◗ ◗ ◗ ● ● ● ❍ ● ❍ ❍ ●
[114] 2020 ❍ ❍ ◗ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ●
[81] 2020 ❍ ● ● ◗ ❍ ◗ ● ❍ ❍ ❍ ❍ ❍ ❍
[29] 2020 ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ◗
[32] 2021 ◗ ❍ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
[56] 2021 ● ◗ ● ❍ ❍ ● ● ❍ ❍ ❍ ❍ ❍ ●
[85] 2022 ● ● ❍ ◗ ● ● ● ◗ ❍ ● ● ◗ ●
Ours 2022 ● ● ● ● ● ● ● ● ● ● ● ● ●

(❍–none, ◗–Moderate, ●–Comprehensive; Perf. Meas.: Performance Measurement, Anal.: Analytical, Config.:
Configuration Setting, V. & S.: Vulnerabilities and Countermeasures, PLS: Physical Layer Security).

In comparison with prior works (see Table 1), our survey presents two novel contributions.
First, our survey covers various efforts made to LoRa comprehensively and up to date, which
complements the previously published ones. Second, our survey summarizes and compares LoRa
works from a new perspective. Figure 3 gives a taxonomy of our survey. Specifically, our article
provides a comprehensive survey on LoRa from four-fold: LoRa analysis works and tools, LoRa
communication studies in terms of Physical (PHY) and Media Access Control (MAC) layer,
LoRa security vulnerabilities and countermeasures, and LoRa-enabled applications. The rationale
behind the organization is that, since the advent of LoRa, early-stage studies focus on understand-
ing and analyzing LoRa performance through various field studies or simulation tools. Afterward,
as a networking technology, a large quantity of research efforts have been made to improve the
performance of LoRa networks in communication. Meanwhile, with massive deployments of LoRa
networks, security is receiving much attention. As LoRa tends to mature in a variety of common
IoT applications, many works contribute ones beyond the scope of LoRa radio. Thus, such taxon-
omy provides a good fit for the cognition of the evolution of LoRa technology, which provides
an aggregation of LoRa methodologies in different aspects and a new perspective for the research
community. In particular, the four parts are specified as follows:

• LoRa Analysis. LoRa performance analysis works aim to investigate and interpret LoRa
network performance in various environments, which can also serve the further exploration
in various LoRa communication, security, and its enabled applications works. Specifically,
these works include early-stage performance measurements and three types of conducted
tools: analytical models, simulators, and testbeds.
• LoRa Communication. Many efforts have been made to target improving the performance

of LoRa networks in communication, in terms of throughput, communication range, scalabil-
ity, and energy consumption. These works give a focus on LoRa PHY and MAC layer, which
can be divided into three categories: LoRa (de)modulation techniques, MAC protocols, and
configuration settings.
• LoRa Security. Security is fragile but critical for any wireless communication technologies,

receiving significant attention in vulnerabilities and countermeasures, coupled with PHY
layer security methods.
• LoRa-enabled Applications. The wide deployment of LoRa networks has inspired a wide

range of applications, including backscatter, sensing, integration with heterogeneous wire-
less technologies, and other applications.

Based on that, comparisons of existing LoRa works (e.g., in Tables 6, 8, 11, 12, 13), with brief
summaries and insightful discussions, are also given.
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Fig. 3. Taxonomy of this survey.

The remainder of the survey is organized as follows: LoRa preliminary, inclusive of its PHY and
MAC layer, is introduced in Section 2. LoRa analysis works and different types of tools are reviewed
in Section 3. Various LoRa communication studies are surveyed and compared in Section 4. LoRa
security vulnerabilities and countermeasures are discussed in Section 5. LoRa-enabled applications
in different fields are reviewed in Section 6. The challenges and potential future development of
LoRa are discussed in Section 7, followed by the Conclusion in Section 8.

2 LORA PRELIMINARY

Although LoRa has been extensively introduced in numerous papers, to make this article self-
contained, we provide a brief preliminary of LoRa, together with LoRa PHY layer and LoRaWAN
MAC layer.

2.1 LoRa Overview

LoRa, standing for “Long Range,” is a proprietary spread spectrum modulation technique, while
LoRaWAN is a data link layer specification built on top of LoRa. LoRa operates in the unlicensed
sub-GHz ISM radio band, depending on the deployed regions (e.g., 863–870 MHz in Europe, 902–
928 MHz in the USA), but also obliges to the duty cycle regulations (e.g., 1% in Europe). Compared
with short-range wireless standards and cellular technologies, LoRa shows remarkable results in
long-range transmission and ultra-low power consumption. Specifically, its coverage range is up
to 15 km (rural areas) and 5 km (urban areas), its device battery life is up to 10 years, and its data
rate ranges from 0.3 to 37.5 Kbps [22]. Some other properties, such as low cost of devices, con-
current reception capacity of gateways, and the resiliency of modulation attribute against fading,
multipath, and Doppler effect compared to other wireless signals [89], also make LoRa compelling.
It is noted that real-life deployed LoRa networks typically cannot obtain the optimal performance
that LoRa promises, due to the deployment complexity and various interference.

2.2 LoRa PHY Layer

LoRa PHY layer adopts a proprietary spread spectrum modulation technique derived from CSS
with an integrated Forward Error Correction (FEC) mechanism [128], which offers substan-
tial processing gains for link budget improvements and resiliency to multipath and interference.
Figure 4 shows a LoRa packet structure, which consists of a preamble with 8 base up-chirps, a
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Fig. 4. LoRa PHY packet structure. Fig. 5. LoRa network architecture.

synchronization word with 2 base up-chirps, a Start of Frame Delimiter (SFD) with 2.25 base
down-chirps, and payload data followed by Cyclic Redundancy Check (CRC).

In LoRa modulation, the frequency of chirps constantly varies linearly with time within the
pre-defined available narrow bandwidth. Specifically, a base up-chirp is defined as one that linear

sweeps from its initial frequency −BW /2 to BW /2, represented as C (t ) = e j2π ( k
2 t− BW

2 )t . LoRa
modulation is performed by representing each bit of payload by multiple chirps with a shifted
initial frequency fsym , thus the signal of a symbol is denoted as S (t , fsym ) = C (t ) · e j2π fsym t [68].

As for the demodulation, the receiver performs the “de-chirp” operation where each received
symbol is multiplied with a base down-chirp (i.e., the conjugate of a base up-chirp), denoted as
S (t , fsym ) ·C−1 (t ) = e j2π fsym t [68], resulting in a single frequency tone. Then the receiver applies
the Fast Fourier Transform (FFT) on the multiplication result, where the resulted one FFT peak
indicates the initial frequency fsym .

The configuration for a LoRa device is mainly specified by such parameters: Spreading Factor

(SF), BandWidth (BW), Code Rate (CR), Carrier Frequency (CF), and Transmission Power

(TP). Specifically, SF, ranging from 7 to 12, represents the number of symbols per bit of payload. A
higher applied SF incurs a lower data rate, longer propagation time, and more energy consumption,
but provides better sensitivity and a wider transmission distance. Hence, devices located farther
from the gateway require a higher SF due to the more link budget need, which provides increased
processing gain but at the cost of a lower data rate. Besides, SFs are orthogonal (essentially quasi-
orthogonal [128]), which allows transmission of signals modulated with different SF in the same
channel. The BW is typically 125 kHz, 250 kHz, and 500 kHz. And the CR, denoting the rate of
the FEC code, can be set to 4/5, 4/6, 4/7, or 4/8, where a higher one offers more protection at the
cost of increasing the air time. Then, the LoRa modulation bit rate Rb can be calculated through
Rb = SF × BW

2S F × CR. Besides, LoRa band in distinct regions defines different multiple frequency
channels, and CF is the center frequency of these channels. TP on a LoRa radio is restricted by
the specific hardware, generally ranging from 2 to 20 dBm [14]. Tuning the parameters above
can achieve a tradeoff between communication range, data rate, and power consumption, which
inspires plenty of configuration setting methods (see Section 4.3).

2.3 LoRaWAN MAC Layer

LoRa only defines the lower PHY layer in the communication stack, resulting in several available
upper network protocols, among which LoRaWAN is the most popular networking protocol.
It is noted that LoRaWAN is extensively regarded as a MAC protocol for LoRa; however, the
LoRaWAN stack operates at the data link layer and does not define any channel access control
scheme. LoRaWAN protocol mainly defines LoRa network architecture and its bi-directional
communication protocol. As shown in Figure 5, the LoRaWAN network architecture is a typical
star topology, mainly including end devices, gateways, network servers, and application servers.
End devices (also called nodes, clients, points) equipped with various sensors are placed in the
scenarios as data sources. Gateways (also called base stations) are the bridge between end devices
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and network servers. Network servers are the LoRa network controller taking charge of the
management of devices and applications, while application servers provide the operation interface
with users. Additionally, LoRaWAN defines three types of operation classes for end devices, i.e.,
class A(ll), B(eacon), and C(ontinue). Class A is the default one that all devices must implement,
while B and C are the optional ones. Class A, where two receive downlink windows are created
shortly after an uplink transmission from devices, is the most energy-efficient among these three
ones. Apart from two receive slots, end devices add scheduled downlink ping slots in class B,
triggered by synchronization beacons broadcasting from gateways. Class C, where end devices
continuously keep listening when unless are transmitting (i.e., half-duplex), thereby is the most
energy-consuming one. Choosing the optimal operation class can reduce energy consumption
and meet the response time requirements of different application scenarios.

Additionally, LoRaWAN provides media access, Adaptive Data Rate (ADR), and security ser-
vices. LoRaWAN MAC layer employs a default primitive ALOHA MAC protocol [49] that allows
end devices to transmit as soon as they wake up, without channel detection and time synchro-
nization. Besides, ADR is a vital mechanism of LoRaWAN, allowing end devices to be configured
with different data rates dynamically according to network conditions. However, LoRaWAN does
not give a definition of the ADR algorithm, hence resulting in many studies [81]. LoRaWAN pro-
vides security functions by relying on Advanced Encryption Standard (AES) algorithms and
two 128-bit unique session keys (i.e., NwkSKey and AppSKey) to complete data encryption, mes-
sage integrity checking, and node authentication. The session keys can be obtained through two
activation processes, i.e., Activation By Personalization (ABP) and Over-The-Air Activation

(OTAA).

3 LORA ANALYSIS

Since the advent of LoRa technology, various LoRa performance analysis works have been ongo-
ing, aiming to investigate and interpret the performance of LoRa networks in terms of through-
put, communication range, scalability, and energy consumption. Specifically, these works include
early-stage performance measurements and three types of conducted tools (i.e., analytical mod-
els, simulators, and testbeds). Analytical models are designed to give a mathematical explanation
process for some specific tasks, such as link and energy analysis. Simulators are popular in the-
oretical method evaluation due to their convenience and low cost. Testbeds are utilized for the
performance evaluation of the real LoRa network under different scenarios to explore its capabil-
ities and limitations to provide a benchmark standard. To this end, we first give a summary of
performance measurement works, then review corresponding analysis tools in this section.

3.1 Performance Measurements

Some early performance measurement works conduct testbed experiments, perform simulations,
build analytical models, or adopt their collaborations to explore LoRa-related performances in
terms of LoRa radio [8], link condition [44], node energy consumption [89], network communi-
cation range [120], scalability [108], and so on. It is noted that analytical models are generally
inevitable parts serving for testbed experiments and simulations, but testbed measurement is the
most favored choice owing to its real and objective experimental results. Table 2 summarizes the
classical performance measurement works, along with their corresponding conclusions.

Liando et al. [89] conducted various LoRa network performance measurements in a 3-gateway
and over 50-node testbed. Specifically, they revealed: (1) the communication range in the line-of-

sight (LOS) scenario is 10 km, while drops sharply to 2 km in obstacle blocking non-line-of-sight

(NLOS) one under the settings of SF12 and PRR 70%; (2) the predicted node lifetime under different
configuration settings ranges from 1.19 to 4.54 years; (3) multiple access performances in terms of

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



Recent Advances in LoRa: A Comprehensive Survey 67:7

Table 2. Summary of LoRa Performance Measurement Works

Reference Year Experimental Setup Performance Metric & Conclusion

Augustin et al. [8] 2016 Testbed and simulator
Modulation: resistance to interference
Coverage: 2.8 km in an urban area

Bor et al. [15] 2016 LoRaSim simulator Coverage: 120 nodes in the area of 3.8 ha in a city scenario

Petäjäjärvi et al. [120] 2017
1-node and
1-gateway testbed

Doppler robustness: getting worse when speed is greater than 40 km h−1

Range: 30 km on water with PPR 62%, SF12, and TP14 dBm

Feltrin et al. [44] 2018 2-node outdoor testbed
RSSI: decreases from −80 (2 km) to −100 dBm (10 km)
Inter-SF: quasi-orthogonal, co-SF: SIR varies from 0.3 to 1.7 dB

Liando et al. [89] 2019
3-gateway and
over 50-node testbed

Range: >10 km (LOS), <3 km (NLOS)
Node lifetime: 1.19–4.54 years
Multiple access: gateway capacity is 6,249 nodes with PRR 70%
LoRa is resilient against Doppler effect, etc.

Xu et al. [177] 2019
10-node indoor testbed
(4 types buildings)

Large-scale fading: influenced by many factors (e.g., materials, layout)
Temporal fading: follows Rician distribution K-factors (12–18 dB)

Tian et al. [152] 2021 21-node outdoor testbed
High temperature gradient across nodes in different deployments
Temperature and RSS: high correlation
Impact of temperature is greater than weather conditions

(PRR: Packet Reception Ratio, RSSI: Received Signal Strength Indication, SIR: Signal-to-Interference Ratio, SNR:
Signal-to-Noise Ratio).

SF and single-channel capacity, where the gateway capacity is 6,249 nodes with PRR 70%. Besides,
they provided some insights on the enhancement of parameter optimization, MAC protocol, con-
current reception, and PHY layer based on their measurements. Xu et al. [177] investigated the
LoRaWAN network performance in four types of multi-floor buildings, including LoRa large-scale
and temporal fading characteristics, coverage, and energy consumption. They conclude that many
factors, such as building materials and layout, influence the path loss greatly, and the temporal
fading follows Rician distribution with its K-factors falls between 12 and 18 dB. Tian et al. [152]
released a large-scale dataset focusing on the network and link-level performance in a 21-node
outdoor LoRa network for over four months. Specifically, the data features with three types of
attributes, i.e., basic (time, SF, TP, etc.), connectivity and link quality (PRR, RSS, SNR), and environ-
mental (temperature measured by nodes, weather condition, etc.) attributes. Besides, they provided
evaluation scripts for data analysis and visualization.

LoRa preliminary performance measurement works aim to understand the capabilities and limi-
tations of LoRa networks, which have made a fundamental contribution to the follow-up research.
Liando et al. [89] conducted large-scale deployment and measurement to comprehensively investi-
gate the performance of LoRa networks in terms of range, energy, and capacity. Radio fading [177]
and inter-SF transmission [44] also received considerable attention. Additionally, public datasets
[152] provide a novel and labor-saving solution for research. However, the type of hardware and
the diversity of deployment environments bring complexity to such measurement works. Further-
more, quantifying LoRa performance with the corresponding factors is a crucial and popular re-
search trend.

3.2 Analytical Models

An analytical model, i.e., a mathematical model with closed-form solutions, quantitatively repre-
sents the interrelationship of a set of parameters to describe a specific problem. A large number of
methods pursue capturing the complexity of real-world deployment of LoRa networks to derive
an accurate, interpretative, and general analytical model before solving various research problems
such as optimal parameter assignments [53]. The existing analytical models mainly concentrate on
the link and energy models, where network deployment, device configuration, and environmental
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Table 3. Summary of LoRa Analytical Models

Reference Year Model Features

Para.

Config.

Multiple

Gateways

Channel

Variation

Collision

Probability

SF Quasi-

orthogonality

Duty

Cycle

Envir.

Factor

L
in

k
M

o
d

e
l

Georgiou and Raza [55] 2017
SNR-based link-outage
SF-based link-outage

✓ ✗ ✓ ✓ ✗ ✓ ✗

Waret et al. [166] 2018
Throughput
(bit-rate×success probability)

✓ ✗ ✓ ✓ ✓ ✓ ✗

Mahmood et al. [102] 2018 SNR-based success probability ✓ ✗ ✓ ✓ ✓ ✓ ✗

Chall et al. [40] 2019
Empirical measurement-based
path loss

✗ ✗ ✓ ✗ ✗ ✗ ✓

Demetri et al. [37] 2019 Learning-based path loss ✗ ✓ ✓ ✗ ✗ ✗ ✓
Liu et al. [94] 2021 Learning-based path loss ✗ ✓ ✓ ✗ ✗ ✗ ✓
Toro-Betancur et al. [157] 2021 Node-level delivery ratio ✓ ✓ ✓ ✓ ✓ ✓ ✗

Para.

Config.

Multiple

Chipsets

Inner

Unit

Collision

Probability

Multiple

Modes

Duty

Cycle

Envir.

Factor

E
n

e
rg

y
M

o
d

e
l Casals et al. [20] 2017

Current consumption, lifetime,
and energy efficiency

✓ ✗ ✗ ✓ ✓ ✓ ✗

Bouguera et al. [16] 2018 Node Energy Consumption ✓ ✗ ✓ ✗ ✓ ✗ ✗
Liando et al. [89] 2019 Node lifetime ✓ ✓ ✓ ✓ ✓ ✓ ✗

Delgado et al. [36] 2020
Battery-free LoRa node
Markov-based uplink and downlink

✓ ✗ ✓ ✓ ✓ ✗ ✓

Finnegan et al. [46] 2020 Ambient RF energy harvesting ✓ ✗ ✓ ✗ ✓ ✓ ✓

(Para.: Parameter, Envir.: Environment).

factors are integrated into these models for LoRa link and energy analysis. Table 3 summarizes
current LoRa analytical models.

Link Models. A large body of work aims to understand the channel quality by analyzing the
link conditions of LoRa networks, such as path loss [94], delivery ratio [157], and interference. In
a single gateway scenario, Georgiou and Raza [55] leveraged a stochastic geometry framework to
study link-outage conditions concerned with SNR and co-SF and revealed that the network scal-
ability is susceptible to the latter one owing to the exponential degrading performance. Likewise,
SNR threshold, co-, and inter-SF interference were studied in References [102, 166]. Several models
[55, 166] only considered simple network topologies or make strict assumptions about the spatial
network distribution, resulting in poor generality. Toro-Betancur et al. [157] proposed a general
node-level delivery ratio model without any restrictions on network deployment or device config-
uration, which characterizes quasi-orthogonal transmission under many considerations such as
capture effect, duty cycle, multiple gateways, and channel variation.

Besides, several methods [12, 40] focus on the path loss modeling of LoRa networks. The path
loss (also called path attenuation) refers to the power attenuation during the transmission, varying
along with different land-covers on the path due to the radio reflection, diffraction, and so on. Chall
et al. [40] adapted the most widely used free-space, log-distance, and multiwall-and-floor path loss
models based on the empirical measurement results to derive their models in indoor and outdoor
environments, respectively. Remote sensing techniques are utilized for land-covers analysis in Ref-
erences [37, 94]. Demetri et al. [37] proposed an automated link quality estimation method without
on-site measurements, which can also be used for gateway deployment planning. Specifically, they
first proposed a toolchain to recognize seven types of land-covers based on freely multispectral im-
ages from satellites, and then they presented an Okumura-Hata [107] model-based framework for
expected received power estimation. Rather than the physical path loss model [40], Liu et al. [94]
proposed a deep learning-based long-distance path loss estimation framework termed DeepLoRa,
with an emphasis on the types and order of land-covers. Specifically, DeepLoRa divides the link
into an ordered sequence of micro links with equal length and utilizes remote sensing images
to identify the detailed land-covers of each micro-link. Then, DeepLoRa adopts a Bidirectional

Long-Short-Term-Memory (Bi-LSTM) network to learn the path loss model.
Energy Models. Energy consumption of LoRa nodes to complete routine data collection and

transmission process is a key indicator for constrained LoRa networks. Thus, several studies
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[20, 89] proposed models to characterize the energy consumption of transmission or the nodes’
lifetime. Casals et al. [20] first defined the different states of the nodes from waking up to sleep in
one transmission, then derived a series of energy models under various considerations concerning
data rate, collision, un- and acknowledged transmission. Specifically, they modeled the node aver-
age current consumption of these different states, lifetime through the battery capacity divided by
the current, and energy efficiency of data delivery through the real divided by the expected one.
Bouguera et al. [16] deduced an energy model allowing for different settings of parameters and IoT
scenarios by calculating and summing the energy consumption of inner sensor node elements in
sleep and active operating modes. Liando et al. [89] modeled the energy consumption to quantify
the lifetime of LoRa nodes via the testbed measurement across multiple chipsets. Specifically, they
first captured the energy profile of the microcontroller unit (MCU) and LoRa transceiver using
a monsoon power monitor under different parameter settings, then calculated the node lifetime
by multiplying the single transmission cycle time duration and the supporting transmission cycle
number of a specific battery.

Besides, several models [36, 96] explored the possibility of energy harvesting of LoRa. Delgado
et al. [36] first derived a battery-free LoRa node model involving energy harvesting system, circuit,
and load models, then proposed a Markov model to characterize the uplink packet delivery ratio

(PDR) and probability of receiving downlink packets, defined by parameters with respect to device
configuration, application behavior, and so on. Finnegan et al. [46] explored the boundaries of the
feasibility of ambient Radio Frequency (RF) energy harvesting for LoRa devices. Specifically,
they first recombined the energy model of nodes from the sensing, networking, data processing,
and other system tasks parts, then deduced the aggregated energy model by quantifying ambient
RF power level and integrating the impacts of harvesting components including rectenna, power
management unit, and storage device.

In general, a reliable analytical model integrates principle characterization and interrelationship
of parameters to reflect the internal law, which is significantly vital for further research in terms
of quantitative analysis and performance evaluation. For link models, network configuration, SF
quasi-orthogonality, and radio fading are typically common considerations. Remote sensing tech-
niques [37, 94] provide a solution for measurement-free link modelling, which can be used for
localization [91]. For energy models, the energy profiles under different inner units, states, and
parameter settings are captured. Additionally, energy harvesting models shed light on some har-
vester designs [100]. However, strict assumptions, complex and long-term environmental variance
will limit the deduction of general models.

3.3 Simulators

A network simulator is a virtual tool to explore the system-level or link-level performance through
the reproduction of communication interactions in the networks. It is typically composed of net-
work configuration definition (e.g., topology, parameter, and propagation model), event simulation
(e.g., uplink and downlink), and performance evaluation. Simulators are widely used in theoretical
model evaluation when large-scale testbeds are not deployed or inconvenient to operate. There-
fore, several open-source LoRa simulators have been proposed in recent years, especially used for
LoRa network scalability and throughput evaluation. Table 4 presents current popular simulators
designed for LoRa networks, along with their included features.

Bor et al. [15] proposed a simulator termed LoRaSim based on their derived communication
behavior model involving range and collision behavior considerations. Specifically, the range con-
siders the configuration settings (i.e., received signal power, path loss, and sensitivity) to determine
whether a packet is received or not, while the collision behavior determines the decoding under
different conditions (i.e., CF, SF, timing, power). Magrin et al. [101] designed an ns-3 module for
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Table 4. Summary of LoRa Network Simulators

Simulator Year Envir.
Features

Topol. & Para.

Config.

Class C

Support

MAC

Command

Bi-directional

Traffic

Propagation

Model

SF Quasi-

orthogonality

Duty

Cycle

Node’s Energy

Consumption

LoRaSim [15] 2016 SimPy ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Magrin et al. [101] 2017 ns-3 ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
Abeele et al. [159] 2017 ns-3 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
Croce et al. [30] 2018 Matlab ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗
FLoRa [140] 2018 OMNeT++ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
LoRaFREE [2] 2019 SimPy ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Finnegan et al. [45] 2020 ns-3 ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
LoRaWANSim [106] 2021 Matlab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Topol.: Topology).

the LoRaWAN network performance simulation under the assumptions at both the link and the
system level. Specifically, the link model contains a link measurement model abstracting the ef-
fect of such as propagation loss and fading, and a performance model determining transmission
and interference. The system model includes SF and CF allocation tasks. Abeele et al. [159] built a
physical error model through the baseband simulations over an Additive White Gaussian Noise

(AWGN) channel, together with LoRaWAN MAC protocol, for the proposed ns-3 simulator. Croce
et al. [30] focused on the superposition of multiple LoRa radios from different SFs. Besides, several
proposed simulators were designed with an emphasis on specific methods, such as ADR [45, 140]
and MAC protocol [2]. Marini et al. [106] proposed LoRaWANSim, a to-date simulator for the sake
of completeness, which characterizes the LoRaWAN network behavior with respect to PHY, MAC,
and network aspects.

In general, a simulator is an efficient, convenient, and low-cost tool to evaluate the perfor-
mance of LoRa networks. Many classic simulators have been proposed so far, including References
[15, 30, 101], and LoRaWANSim [106] is the most comprehensive one to date. However, current
simulators are not full-featured enough, owing to the focus on some specific kinds of tasks. Hence,
developing full-featured simulators still deserves further efforts. In addition, the characteristics of
the simulator indicate that it is generally suitable for the theoretical method evaluation, so the
testbed can make up for it with regard to the evaluation objectivity and reality.

3.4 Testbeds

A testbed is a real-life deployment platform containing complete network components, aiming
at conducting controllable and reproducible experiments to obtain actual results via real-life de-
ployments. Apart from private LoRa networks [49, 92], research communities have contributed
to many public open-source testbeds for evaluation works. Current public open-source testbeds
primarily include testbeds platforms [54] and endpoint prototypes [65]. Specifically, remotely ac-
cessible testbed platforms typically contain a complete network architecture for stand-alone in-
stance spawning, including device management, programming, and web services. They enable
researchers for remote application test and development, which resolve the problem of high-
cost, time-consuming, and labor-consuming deployment and maintenance of a LoRaWAN testbed.
Testbed endpoint prototypes provide a flexible and easily deployable solution in terms of heteroge-
neous networking protocol, inconvenient network (e.g., Ethernet, cellular), and power conditions.
It is noted that both of them rely on a framework for device and service profiles management.
Table 5 lists current LoRa public testbed platforms and endpoint prototypes.

Testbed Platforms. Dongare et al. [38] proposed an open-source LoRaWAN network testbed
platform termed OpenChirp, built upon LoRaWAN with the user management framework,
application programming interfaces (APIs), and core services. In particular, OpenChirp is
currently powering a hosted campus network, enabling users to spawn stand-alone instances with
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Table 5. Summary of LoRa Public Testbed Platforms and Endpoint Prototypes

Testbed Year Architecture Networking Node Case Study

FIT IoT-Lab [3] 2015
Software (user, back-end),
Hardware (open node, gateway, control node)

Wi-Fi, LoRa,
BLE, etc.

2,728 IoT nodes,
117 mobile robots

Impact of Wi-Fi traffic visualizing,
smart floor demonstration

P
la

tf
o

rm

OpenChirp [38] 2017
LoRaWAN with user management, API, etc.,
LoRaBug hardware

LoRa – –

FlockLab 2 [158] 2020
Testbed server (data services, web interface),
observers, target devices

Wi-Fi, LoRa, etc. 15 observers
Synchronous transmission protocol,
workflow testing,
protocol debugging and analysis

LinkLab [54] 2020
Web IDE, online compilers,
device management components

Wi-Fi, LoRa,
Bluetooth, Zigbee

156 IoT nodes
Indoor environment monitoring,
IoT education

P
ro

to
ty

p
e WiSH-WalT [97] 2018

WiSHFUL unified interface,
WalT single-board computer

LoRa – –

TinySDR [65] 2020
Software radio, OTA programmer,
power management system

900 MHz,
2.4 GHz

–
LoRa: modem, resource allocation, MAC
BLE: transmission, latency

ChirpBox [151] 2021
LoRaDisC protocol,
target nodes, control nodes

LoRa –
Benchmarking protocol performance,
impact of temperature

various services concerning device registration, data serialization and storage, and web access. Gao
et al. [54] proposed LinkLab, a scalable and heterogeneous testbed with support for multi-user and
multi-site remotely experimenting and web-based developing. Specifically, LinkLab is composed
of the WebIDE, online compilers featuring incremental compilation and multi-user caching, and
device management components with a unified naming mechanism. Likewise, FIT IoT-Lab [3] and
FlockLab 2 [158] large-scale testbeds also support heterogeneous wireless nodes including LoRa,
but they possess a limited number of nodes and are deployed mainly in indoor environments [151].

Testbed Endpoint Prototypes. Lone et al. [97] presented a framework for controllable and re-
producible LoRa testbeds termed WiSH-WalT, which consists of a WiSHFUL unified interface for
flexible radio and network settings and a WalT single-board computer for easy device deployment
and operation monitoring. Hessar et al. [65] proposed the first Software-Defined Radio (SDR)

platform named TinySDR to enable large-scale deployment and over-the-air programming. Specifi-
cally, TinySDR is composed of software radio, OTA programmer, and a power management system,
supporting various research of PHY/MAC protocols, IoT localization, backscatter readers, and so
on. Besides, TinySDR outperforms existing SDR platforms in terms of low power consumption and
cost. The complexity of assembling the backbone infrastructure limits the development and avail-
ability of existing LoRa outdoor testbeds. To this end, Tian et al. [151] proposed an infrastructure-
less LoRa testbed termed ChirpBox, which could be deployed in areas without the need of cellular
or backbone infrastructure providing communication and power conditions. Specifically, all LoRa
target nodes are equipped with a daemon used for orchestrating the node’s activities (e.g., exe-
cution of a test run, the collection of log trace) and a Firmware Under Test (FUT) for running
tests. Target nodes are connected via a multi-hop network to the control node that serves as an
interface with the user. Besides, they designed an efficient all-to-all multi-channel protocol-based
concurrent transmission termed LoRaDisC to disseminate the FUT and test-run configurations.

In general, current public open-source LoRa testbeds provide a flexible and low-cost solu-
tion for researchers to conduct controllable and reproducible experiments for real-life evalua-
tion, presenting significantly important to the research community. The existing testbed platforms
[3, 38, 54, 158] all built a well-defined framework, among which LinkLab [54] can support multi-
user remote development featuring Web-based development and incremental compilation. How-
ever, the existing testbed platforms only possess a limited number of LoRa nodes and type of
sensors (mainly including temperature, humidity, sound, acceleration, and light sensors), whereas
FlockLab 2 [158] is also capable of achieving high-dynamic range power and logic timing measure-
ments for the debug and trace. FIT IoT-Lab [3], FlockLab 2 [158], and LinkLab [54] testbeds sup-
port various heterogeneous IoT nodes in various places, while OpenChirp [38] is a LoRa-specific
testbed, but is deployed in restricted campus areas with an unknown number of LoRa nodes. Early
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testbed platforms [3, 158] are generally more popular than the emerging ones [38, 54], due to their
stable and mature operations. Besides, as for the programmable endpoint prototypes, TinySDR
[65] provides large-scale deployments with ultra-low energy consumption manner and OTA solu-
tions, which is also satiable for research with respect to backscatter, PHY/MAC protocol, sensing,
and so on. Likewise, ChirpBox [151] offers an infrastructure-less solution, featuring firmware dis-
semination and log trace, which is hence recommended to be deployed in remote areas without
communication and power conditions. Additionally, both possess a low cost of construction and
the capability of concurrent reception, but require a battery supply where energy harvesting can be
further considered [151]. However, current testbeds have some limitations with regard to hardware
(limited number of nodes and sensors, single network topology), framework (limited functionali-
ties), and user experience (complex operation). Hence, providing a large-scale, comprehensive, and
human-machine friendly testbed is in great need.

4 LORA COMMUNICATION

After fully understanding the performance of LoRa, a large number of studies have been devoted
to enhancing its performance in communication. In this section, we review these studies from
three aspects: modulation and demodulation schemes, MAC protocols, and configuration setting
methods. Specifically, various LoRa modulation and demodulation schemes were proposed for the
network throughput improvement on the basis of LoRa PHY layer CSS modulation and de-chirp de-
modulation. In addition, modified MAC protocols aim to handle multiple access problems without
incurring collisions. Configuration settings refer to optimal determination of transmission param-
eter sets to rationalize the use of channel resources and achieve energy fairness across nodes.

4.1 Modulation & Demodulation

As stated in Section 2.2, LoRa PHY layer adopts a spread spectrum modulation technique derived
from CSS, possessing substantial processing gains and link budget improvements. With consider-
able modulation benefits, LoRa demodulation based on the de-chirp operation enables low-SNR
[86] and collision [167] signals decoding, which also receives great attention. Consequently, exten-
sive methods [61, 167] were proposed to expand the benefits of LoRa PHY modulation technique.

4.1.1 Modulation. Recently, some modified modulation methods [27, 42] were proposed to
leverage LoRa CSS properties or adopt a combination with other modulation techniques, aiming
at increasing the modulation data rate without compromising its original performance.

Traditional digital modulation is primarily based on the amplitude, frequency, and phase in-
formation of the carrier to form these particular parameters shift keying, including conventional
ASK, FSK, PSK, along with their improvements or combinations. The essence of LoRa modulation
is the frequency shift of the chirp, thus some LoRa modified modulation methods [13, 112] mainly
try to carry extra data information in the LoRa symbols by combining with other modulation
techniques to increase the data rate. Bomfin et al. [13] proposed a modulation method termed PSK-
LoRa, which adopts PSK modulation to embed additional data in the phase shift of the transmitted
chirps. Specifically, the information bits are divided into two groups, which determine the initial
frequency and the initial phase of the LoRa symbol, respectively. Similarly, in Reference [112],
LoRa symbols can start from any phase value with the help of the pulse shaping filter, such that
extra data information can be encoded to the initial stage of each symbol, which is then recovered
using a coherent receiver. It is noted that PSK can only be decoded under coherent demodulation,
as no carrier component is in the PSK signal’s power spectrum. Such additional receiver design,
along with timing and phase synchronization requirements, will increase the cost and degrade the
battery life of nodes.
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Besides, some methods [42, 61] focus on elaborate LoRa signal orthogonal sets. In LoRa con-
ventional CSS modulation, the linearly varying-frequency up-chirp spans the entire bandwidth,
whose cyclic shift serves as a multi-dimensional space for the orthogonal signals. Elshabrawy and
Robert [42] proposed an Interleaved Chirp Spreading LoRa (ICS-LoRa) modulation method,
which creates a new multi-dimensional space from the interleaved version of nominal LoRa sig-
nals. Specifically, the proposed ICS interleaver block subdivides the given signal containing 2S F

samples into four subintervals and simply swaps the samples of the two middle intervals of each
signal. Such that ICS-LoRa can deploy all 2S F possible cyclic shifts of the interleaved base chirp
signal to achieve interleaved chirp signal that carries one extra bit within each symbol. In addi-
tion, ICS-LoRa demodulation can also share this ICS interleaver block for simplification without
any coherent demodulation requirements. To reduce the cross-correlation between generated and
base chirps in ICS-LoRa, Hanif et al. [61] proposed a slope-shift-keying LoRa (SSK-LoRa) mod-
ulation method, which utilizes the linearly varying-frequency down-chirp to generate the second
orthogonal basis set to increase the data rate.

The improved modulation technique is promising, since it can carry more data in one transmit-
ted symbol. Some studies [61, 112] have achieved the throughput gain from 11% to 33% of LoRa
networks. However, the complexity of the transceiver design, the compatibility with COTS devices,
and energy consumption issues still make this work challenging.

4.1.2 Demodulation. Recently, plenty of LoRa demodulation studies were proposed to push the
limit of LoRa capabilities in terms of single-source decoding and collision disambiguation.

Single-source Decoding Methods. Single-source decoding methods aim to improve the per-
formance of decoding signals from one specific source, mainly including low-SNR decoding [86],
Cloud Radio Access Network (C-RAN) [39], error recovery methods [104], and so on.

Low-SNR decoding refers to the correct payload reduction of the received signals with an ultra-
low SNR or RSSI. Such methods can break the decoding threshold of conventional LoRa and sig-
nificantly improve the link budget to provide a wider coverage. The standard LoRa demodulation
method performs the de-chirp operation to determine the SNR threshold, which is generally sub-
optimal. To this end, Li et al. [86] proposed NELoRa, a Deep Neural Network (DNN) demodulator
to decode ultra-low SNR LoRa signals by extracting fine-grained information embedded in LoRa
chirps. Specifically, NELoRa transforms the extracted chirp symbols to dual-channel spectrograms
containing phase and amplitude, which are then fed into the dual-stream DNN for demodulation.
The first DNN stream performs the noise filter operation to obtain a masked spectrogram, while
the second one is used for packet decoding. Tong et al. [154] proposed Falcon, which provides an
available link for unreachable LoRa devices via making them selectively interfering transmissions
of other devices (base signals) on the same channel. Specifically, a Falcon device overhears the
channel using a CAD-based detection approach and synchronizes its time and frequency offset by
a reception-based algorithm, then maximizes the base signal deformation by an adaptive frequency
adjusting strategy.

Additionally, several emerging methods [39, 93, 134] focused on the C-RAN design. Specifically,
C-RAN is a centralized radio access network architecture based on cloud computing, whose core is
to process the LPWAN PHY layer in the cloud. Hence, LoRa C-RAN architecture mainly transfers
the incompetent PHY layer decoding tasks at the gateway to the cloud and exploits the spatial
diversity gain for weak signal reconstruction. For example, Dongare et al. [39] proposed Charm,
a LoRa C-RAN that pools and jointly decodes weak signals that cannot decode in any individ-
ual gateway into the cloud. In particular, the gateway introduces a hardware and software design
to detect those signals much weaker than the noise floor by transforming the structure of the
LoRa packet data symbol as resistant as the preamble. The cloud first adopts a phase-based time
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synchronization method, then exploits the timing and geographical location of the received sig-
nals to identify their sources (i.e., the combination of gateways) and collates such information to
recover the transmitted data finally. Jointly decoding the multi-channel LoRa PHY layers in the
cloud can improve the SNR of the radio signal but requires a higher bandwidth, which will then
cause severe network congestion. To reduce the bandwidth, Liu et al. [93] proposed a compressive
sensing-based C-RAN termed Nephalai, which leverages the sparsity of the PHY layer for signal
compression and joint reconstruction. Specifically, Nephalai utilizes tailored dictionaries and mea-
surement matrices for LoRa PHY layer compression, with which the adaptive compression ratios
are chosen by considering SF and SNR.

In all, LoRa offers substantial processing gains and link budgets to decode low-SNR signals.
Thus, many LoRa low-SNR signal decoding methods adopt different methodologies to expand these
advantages and improve network throughput. Among these, learning methods [86] can achieve
a high upper limit of the SNR gain based on the representation learning of data samples, but
possess a poor generalization for distinct settings. Besides, C-RAN architectures [39, 93] mitigate
the disadvantages of LPWAN in terms of narrow bandwidth and loose latency bounds. A full-scale
distributed multiple-input multiple-output (MIMO) system embedded in C-RAN can provide a
solution for handling collisions from a large number of nodes [39]. However, C-RAN architectures
have a high operating cost, short transmission distance, and insufficient security, thus inspiring
further developments.

Packets may be lost or destructed during transmission due to the varying channel and environ-
ment conditions. Thus, a payload recovery scheme [9, 104, 143] is hence considered to provide the
increasing gain and enhance network throughput. Marcelis et al. [104] proposed a data recovery
coding scheme at the application layer termed DaRe, which applies fountain codes on a sliding
window with a finite window. DaRe extends the frame with the parity check of randomly selected
previous frames as the redundancy data, such that the receiver can decode all payload data when
only subsets are received. However, this comes at the cost of increased transmission time. Balanuta
et al. [9] proposed an Opportunistic Packet Recovery (OPR) approach, which exploits gateway
spatial diversity and tracks packet RSSI value for error detection and leverages the Message In-

tegrity Check (MIC) field information for error correction. Specifically, OPR collects and groups
the corrupt packets across gateways instead of discarding them, then generates a candidate set
of corrupt bits based on the spatial diversity and reception time. The generated candidate set is
leveraged by the cloud to search through the possible valid CRC combinations, which results in a
few packets for final filtering via MIC check.

Additionally, decreasing clock rates can reduce the energy consumption of LoRa radio, but it
is limited by the Nyquist sampling theorem that requires the clock rate to be at least twice the
LoRa chirp bandwidth. To reliably decode packets sampled at the sub-Nyquist rate, Xia et al. [169]
proposed LiteNap, which introduces downclocked operating mode for LoRa. They had two-fold ob-
servations: first, two under-sampled LoRa chirps suffer from frequency aliasing that causes demod-
ulation ambiguity; second, radio hardware induces a constant phase shift to all modulated chirp
after jitters, resulting in frequency leakage in the time domain. Based on these, LiteNap leverages
such frequency leakage as a fingerprint to uniquely identify a LoRa chirp and extract the timing
information. Besides, they proposed novel packet detection and synchronization strategies, along
with the integration with LoRaWAN protocol.

Collision Disambiguation Methods. The LoRa gateway has an extremely wide coverage of
nodes, thus LoRa networks may be subject to pervasive and severe intra- and inter-network inter-
ference, especially when in a dense deployment scenario. Interference adversely affects the signal
reception, coupled with the capture effect, which is a waste of air time and spectrum. This prob-
lem results in the demand to support concurrent transmissions or avoid collisions. Consequently,
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Table 6. Summary of LoRa Disambiguation Decoding Methods

Method Year Methodology
Performance

Low-SNR Real-time #Collision Throughput

Choir [41] 2017 Hardware imperfection-induced offset ✗ ✗ 10 6.84× the conventional LoRa
mLoRa [162] 2019 Successive interference cancellation ✗ ✗ 3 3× conventional LoRa
CoLoRa [156] 2020 Identical peak ratio of chirps in the same packet ✓ ✗ 20 3.4× Choir [41]
FlipLoRa [180] 2020 Encoding with interleaved up-down chirp ✓ ✗ 18 3.84× conventional LoRa

Ftrack [168] 2020
Time-domain misaligned edges
and signal frequency continuity

✗ ✗ 10 3× conventional LoRa

Nscale [155] 2020 Non-stationary amplitude scaling down-chirp ✓ ✗ 30 3.3× Choir [41]
OCT [165] 2020 Decoding with time and power offsets ✗ ✓ 3 3× conventional LoRa
SCLoRa [71] 2020 Multi-dimensional cumulative spectral coefficient ✓ ✗ 20 3× Ftrack [168]
Temim et al. [150] 2020 Successive interference cancellation ✗ ✗ 3 -

AlignTrack [26] 2021 Collided chirps alignment ✓ ✗ 12
1.68× Nscale [155]
3× CoLoRa [156]

Pcube [167] 2021
Reception diversities of MIMO
and air-channel phase difference measurement

✗ ✗ 40 4.9× Ftrack [168]

Pyramid [181] 2021
Variation of FFT peak heights
in multiple windows

✓ ✓ 6 2.11× conventional LoRa

Shahid et al. [135] 2021 Concurrent Interference cancellation ✓ ✗ 20 4× Ftrack [168]

plenty of interference solutions were proposed, including PHY layer collision disambiguation al-
gorithms [167, 168] to recover packet information and MAC protocols [49, 173] (reviewed in Sec-
tion 4.2) to maximize the use of channel resources, which both do not conflict but collaborate with
each other.

Collision disambiguation refers to the separation and correct decoding of multiple collided
signals at the receive side. As stated in Section 2.2, in demodulation, the LoRa receiver detects
the packet preamble and SFD and divides the received signals into a series of windows. Then it
performs the de-chirp operation in each window, where each symbol is multiplied with a base
down-chirp. The resulted single frequency tone (i.e., an FFT peak in FFT bins) indicates the initial
frequency. While in the case of collisions, signals from multiple nodes are superimposed at the
gateway, which induces a distorted one, i.e., multiple peaks are obtained in FFT bins. To this end,
the existing collision disambiguation methods mainly separate and divide the collided symbols
to the transmitters based on the unique features (in time [162, 168], frequency [41], phase [167],
and power [68, 165] domains) of each transmitter symbol and decode them individually. Table 6
summarizes the existing LoRa collision disambiguation methods.

As the transmitted signal has a shift in time, frequency, and phase resulting from natural hard-
ware offsets, Eletreby et al. [41] proposed Choir, which exploits such subtle frequency shifts to sep-
arate different signals, then tracks users to decode data finally. However, such hardware-induced
frequency offset is hard to capture due to the background noise and frequency leakage. Hu et
al. [71] proposed SCLoRa with adaptation to the dynamic environment, which exploits cumula-
tive spectral coefficient integrating multi-dimensional information (frequency and power) under
the considerations of channel fading and spectrum leakage. Xia et al. [168] revealed that the fre-
quency of the LoRa symbol increases periodically, while the symbol edges of different interference
transmissions are misaligned in the time domain. They presented FTrack, which separates colli-
sions and recovers frames by leveraging such time-domain misaligned edges and signal frequency
continuity. FTrack requires a sliding window per sample, resulting in a large computational over-
head. In their follow-up work [167], besides using time and frequency features, they designed a
Phase-based Parallel Packet decoder termed PCube for concurrent transmissions by leveraging the
reception diversities of MIMO hardware. Specifically, Pcube first calibrates the frequency offset of
the received signal to extract the correct frame timing of each packet based on the frame structure
of the LoRa preamble and SFD. Then it measures the phases of all concurrent symbols and miti-
gates the impact of hardware-induced phase variance. Furthermore, Pcube extracts the air-channel
phase of each symbol and groups symbols to corresponding packets.
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Some collision disambiguation methods [156, 180] are designed for low SNR situations. For ex-
ample, Chen and Wang [26] proposed AlignTrack for low-SNR collision decoding, which aligns
a moving window with different collided chirps to find the peak of the aligned chirps, and thus
separates these frequency peaks to their belonging packets. Instead of chirp partition in Refer-
ences [155, 156], AlignTrack leverages the entire chirps, such that the aligned chirp can induce the
highest peak in the frequency and lowest SNR loss. Some methods [162, 168] focused on the time-
domain feature that is vulnerable to noise, falling short of decoding low SNR signals. To this end,
more robust frequency features [155, 156, 181] were utilized. Tong et al. [156] proposed CoLoRa
for collision decoding based on the peak ratio of chirps. Specifically, CoLoRa first demodulates the
collided chirps in multiple (usually misaligned) reception windows, thus each chirp can result in
two peaks in two windows. Then CoLoRa leverages the finding that the peak ratio of chirps (the
height of the latter divided by that of the former) in the same packet is identical to disentangle col-
lided signals. To relax the restrictions of the reception window, Tong et al. [155] proposed NScale.
Specifically, NScale leverages the non-stationary amplitude scaling down-chirp to translate the
packet time misalignment into frequency features, thus can determine the distribution character-
istics of the symbol segments in the window according to the peak height variation before and
after scaling. Besides, they proposed an iterative peak recovery algorithm to resolve peak distor-
tion. With the reception window shifting, the FFT peak heights of one chirp in multiple windows
will be presented in a pyramid shape. So, Xu et al. [181] proposed Pyramid to achieve low-overhead
real-time collision decoding, which separates packets via exploiting each “top” of the pyramid.

Rather than matching symbols to transmitters, interference cancellation algorithms [135, 150,
162] are also applied. Wang et al. [162] proposed mLoRa, which iteratively decodes and then can-
cels part of the collision-free symbols. Similarly, Temim et al. [150] identified and decoded the
strongest received signal, then reproduced its complex envelope and removed it from the received
signal utilizing a conventional Successive Interference Cancellation (SIC) algorithm. Shahid
et al. [135] proposed a Concurrent Interference Cancellation (CIC) method. In particular, CIC
first determines these symbol boundaries via preamble detection, then selects an Interference

Cancelling Sub-Symbols Set (ICSS) with no common interfering symbol across all symbols. Fi-
nally, CIC adopts a spectral intersection operation to demodulate symbols via canceling out all
interfering symbols.

Current collision disambiguation methods have significantly ameliorated the concurrent trans-
mission capability of LoRa gateways and alleviated serious collisions. Most of these methods
[41, 156] achieve more than 3× increment in throughput, and some [155, 156] give a focus on weak
decoding of signals below −5 dB. Fundamentally different with collided signals separation meth-
ods by leveraging signal features, SIC algorithms provide a novel solution. However, devising an
effective and energy-efficient collision decoding method remains challenging in terms of accurate
packet detection, optimal peak height search, and algorithm complexity. Specifically, the Carrier

Frequency Offset (CFO) and inter-packet interference need to be combated first to avoid the
wrong packet estimation [26]. Demodulating a low-SNR signal results in a poor peak height, cou-
pled with accompanied sidelobes around. Besides, the reception windows (e.g., alignment, length)
also affect the peak height. Heavy algorithm complexity is impractical for resource-constrained
LoRa networks, as a semi- or off-line decoding way will cause great delay, memory cost, and com-
putational overhead at the gateway side.

Overall, various demodulation methods leveraging LoRa PHY CSS properties and adopting
advanced techniques have improved the network throughput and scalability to a large extent,
which is a primary research focus in the research community. Irrespective of the remarkable re-
sults achieved, the complexity of the algorithm, cost of hardware and actual deployment, and the
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Table 7. Summary of LoRa MAC Protocols

Method Year Methodology Performance

Ihirri et al. [72] 2019
Slotted-ALOHA with synchronization leveraging
FM-RDS broadcasting

–

C
o

n
te

n
ti

o
n

-b
a

se
d Polonelli et al. [122] 2019

Slotted-ALOHA with synchronization relying on
the timestamp and offset

Throughput: 5.8× conventional LoRaWAN

LMAC [49] 2020
Three LMAC versions based on CAD: LMAC-1 using
DIFS with BO, LMAC-2 by indirect channel probing,
LMAC-3 relying on beacon broadcasting

Throughput: 2.2× conventional LoRaWAN
Energy efficiency: 2.4× conventional LoRaWAN

p-CARMA [80] 2020 p persistent-CAD multiple access
Throughput: 3–20× conventional LoRaWAN
Energy efficiency: 1.42–1.63× conventional LoRaWAN

Xu and Zhao [173] 2020
Residual energy-based CAD, CSMA-CA, or
dynamic adjustment duty cycle according to traffic load

Latency: 0.79× conventional LoRaWAN
Energy efficiency: 1.19× conventional LoRaWAN

Beltramelli et al. [11] 2021
Scalable Slotted-ALOHA based on the divided
contention sequence code from LoRa frame

Throughput: 2× conventional LoRaWAN
Energy efficiency: 2× conventional LoRaWAN

Rizzi et al. [131] 2017 Integration with TSCH and TDMA –

S
ch

e
d

u
le

-b
a

se
d

Haxhibeqiri et al. [63] 2018 Centralized scheduling Throughput: 1.3× conventional LoRaWAN
Piyare et al. [121] 2018 On-demand TDMA using wake-up radios PDR: almost 100%
RS-LoRa [129] 2018 Two-step lightweight MAC scheduling Throughput: 1.2× conventional LoRaWAN
EF-LoRa [52] 2019 Energy fairness-enabled FDMA Energy fairness: 177.8%
FREE [2] 2019 Bulk transmission and parameter assignment PDR: almost 100%
LoRaCP [58] 2019 TDMA featuring an urgent ALOHA channel and negative ACK Throughput: 65%→ 90%
RT-LoRa [84] 2019 Novel MAC layer design –
S-MAC [179] 2020 Sending time prediction and frequency channel assignment Throughput: 4.01× conventional LoRaWAN
TS-LoRa [190] 2020 Distributed time-slotted approach PDR: >99%
PolarTracker [164] 2021 Node attitude tracking and transmission scheduling Throughput: 1.49× conventional LoRaWAN

influence of multiple external factors (e.g., dynamic channel conditions, various environments)
still require further study.

4.2 MAC Protocols

MAC protocols refer to the methodology that allows multiple nodes in the networks to access a
shared transmission medium. LoRaWAN employs a default pure ALOHA MAC protocol, whose
basic idea is to send data without detection. It is simple and has no time synchronization require-
ments, making it suitable for resource-constrained LoRa networks. However, the network perfor-
mance will degrade dramatically due to the inevitable interference restrictions when the number
of transmissions increases greatly, thereby suffering limited scalability. To avoid severe collisions,
plenty of MAC protocols were proposed recently, which can be divided into two classes: the con-
tention [49] and schedule-based [2] ones. The contention-based MAC protocols are mainly those
random access protocols such as Slotted-ALOHA and Carrier Sense Multiple Access (CSMA),
where all nodes keep listening to and compete for the shared medium for transmission. In the
schedule-based ones, multiple nodes access the predetermined collision-free medium that is di-
vided according to time (TDMA) or frequency (FDMA). Table 7 summarizes the existing MAC
protocols.

4.2.1 Contention-based MAC Protocols. Recently, plenty of LoRa contention-based MAC proto-
cols were proposed, where the sender listens to the shared medium before transmission and trans-
mits until the medium is free. The existing methods mainly include Slotted-ALOHA and CSMA
ones.

Slotted-ALOHA Methods. Slotted-ALOHA, a variant of ALOHA, aligns the transmissions to
slot boundaries relying on the relative synchronization of nodes, which can reduce the interference
and increase channel capacity. The general process is to divide the time into several identical
time slices, where all senders access the channel synchronously at the beginning of the time slice
and have to wait until the beginning of the next time slice before transmission in the case of
an occurring conflict. As Real-Time Clocks (RTCs) have significant clock drift problems over
time, Polonelli et al. [122] introduced a lightweight time synchronization method based on the
timestamp and offset during one transmission and achieved a Slotted-ALOHA mechanism with
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random backoff to increase the channel capacity. Ihirri et al. [72] proposed a scalable Slotted-Aloha
method by introducing a contention sequence code in the option field of the LoRa frame. Such code
determines the priority of transmission and decreases iteratively. Beltramelli et al. [11] proposed
a Slotted-ALOHA MAC protocol using an out-of-band synchronization based on FM-radio data

system (FM-RDS) broadcasting, which could save energy and improve the capacity unlike an
in-band synchronization strategy.

Carrier Sense Multiple Access Methods. Slotted-ALOHA and TDMA protocols require clock
synchronization that brings a burden to LoRa networks, while CSMA protocols provide an alterna-
tive solution without synchronization operation. Several studies [49, 173] have exploited CSMA or
its variants (i.e., Listen-Before-Talk mechanism [116]) on LoRa networks based on the Channel

Activity Detection (CAD) feature. To address the issue of false negatives introduced by CAD
during the transmission of the payload, Kouvelas et al. [80] proposed a CSMA variant termed
p-CARMA, where nodes adaptively select an appropriate probability value of p for transmission
using a heuristic approach when the channel is idle. In the system proposed by Xu et al. [173], the
LoRa nodes exploit the residual energy to determine the effective preamble from the noise to avoid
false awakening, and access to the channel via selecting CSMA-CA or dynamic adjustment duty cy-
cle mechanism in the case of low or high traffic load, respectively. Gamage et al. [49] designed three
modified LMAC versions to enable CSMA for LoRa networks based on the CAD feature. Specif-
ically, LMAC-1 achieves the basic functionality of CSMA based on a Distributed Inter-Frame

Space (DIFS) mechanism with a fixed number of CADs and a random back-off (BO) strategy.
LMAC-2 achieves a balanced resource load through an indirect channel probing approach, which
updates the knowledge regarding the channels’ crowdedness based on the CAD results during
DIFS and BO processes. LMAC-3 receives a global view of channel loads via broadcasting periodic
beacons by gateways.

4.2.2 Schedule-based MAC Protocols. Recently, LoRa schedule-based MAC protocols are also
popular, where the sender transmits according to pre-assigned link resources. The existing
schedule-based ones mainly focus on Time Division Multiple Access (TDMA) along with time
slot scheduling strategies, and Frequency Division Multiple Access (FDMA) methods.

Time Division Multiple Access Methods. TDMA protocols allow multiple nodes to use the
same frequency for transmission in different time slots, thereby sharing the same transmission
medium without incurring collisions. They also avoid the energy waste of over-listening and idle-
listening to the channel, hence receiving much popularity. For example, Rizzi et al. [131] integrated
Time Slotted Channel Hopping (TSCH) strategy with TDMA to enhance the network through-
put and reliability. However, the synchronization strategy is missing. Piyare et al. [121] proposed
an on-demand TDMA approach using low-energy wake-up radios, which, respectively, provides
unicast and broadcast modes for node triggering and time slots allocation. Gu et al. [58] designed a
TDMA-based LoRa multi-channel transmission control featuring an urgent ALOHA channel and
negative acknowledgment (ACK), to achieve the one-hop out-of-band control plane for wireless
sensor networks.

For TDMA MAC studies, the critical problem is time slot scheduling/allocation. Haxhibeqiri
et al. [63] relied on the network synchronization and scheduling entity (NSSE) as the central
scheduler for the LoRaWAN network to schedule transmissions. Specifically, the node sends a
request containing the traffic periodicity to the NSSE and receives a reply about the allocated time
slots encoded in a probabilistic space-efficient data structure. However, some nodes may share
the same slot with a certain probability, incurring collisions. Abdelfadeel et al. [2] proposed a
fine-grained scheduling scheme termed FREE. Specifically, nodes are assigned with corresponding
transmission parameters inclusive of SF, TP, and time slot, then perform bulk data transmission
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in the predetermined time slot. However, FREE resolves the collision problem but falls short of
real-time transmission. Leonardi et al. [84] proposed RT-LoRa, a novel LoRa MAC protocol as an
alternative of LoRaWAN, which can support real-time flow transmission. In RT-LoRa, the time
slot duration is limited by minimal packet size as a lower bound and varies according to different
SFs. Rather than relying on the centralized scheduler to allocate separate time slots for all nodes,
Zorbas et al. [190] proposed TS-LoRa, a self-organizing time-slotted communication approach
based on computing a hash algorithm mapping the nodes’ assigned addresses into unique slot
numbers. Additionally, the dynamic attitude of floating nodes incurs signal strength losses and
packet errors compared with those deployed statically on the ground due to the polarization and
directivity of the antenna. To this end, Wang et al. [164] proposed an attitude-aware link model
along with a channel access method termed PolarTracker, which leverages the attitude alignment
state of the node, then schedules the transmissions into best-aligned periods for better link quality.

Frequency Division Multiple Access Methods. Similarly, FDMA protocols allow multiple
nodes to transmit in different frequency channels of the shared medium simultaneously. As LoRa
band in distinct regions defines different multiple frequency channels, FDMA-based studies are CF
allocation methods in essence. Plenty of CF parameter allocation methods [52, 129] were proposed
recently. For example, Reynders [129] proposed a MAC layer protocol termed RS-LoRa, which em-
ploys a two-step lightweight scheduling based on the RSS at both nodes and gateways. Specifically,
the gateway specifies the allowed TPs and SFs for each frequency channel via beacon broadcasting,
while nodes specify their own ones. Gao et al. [52] proposed EF-LoRa to allocate frequency chan-
nels under the consideration of the randomness of LoRa MAC protocol. Xu et al. [179] proposed
an adaptive MAC layer scheduler termed S-MAC, which predicts the sending times based on the
periodic transmission characteristics of nodes and allocates frequency channels according to the
SF parameter of the packet.

In general, the existing MAC protocols have significantly ameliorated the severe occurrence of
collisions to improve the network performance in capacity and scalability. However, it is also chal-
lenging to devise adaptive, effective, and energy-efficient MAC protocols. Classic Slotted-ALOHA
methods adopt synchronization strategies mainly based on timestamp [122] and out-of-band ra-
dio. Nevertheless, the number of time slots required is fixed and cannot be adjusted arbitrarily,
which can induce collisions (too many) or time slot waste (too few). The synchronization and slot
scheduling will bring the cost of calculation and propagation transmission time. The CAD features
of LoRa facilitate the CSMA-based methods, among which LMAC [49] achieves communication
fairness across nodes on the basis a 2.2× and 2.4× improvement in throughput and energy effi-
ciency, respectively. CSMA-based methods have no requirements for synchronization, but impose
additional energy for the over-listening and long-time continuous transmission detection opera-
tion. TDMA-based methods mainly focus on the efficient time slot allocation in centralized [2]
and distributed [190] manners. They are inflexible, especially when the data packet size varies
and network topology changes dynamically. Energy-efficient synchronization and feedback ACK
problems require to be tackled. FDMA-based methods are CF allocation methods in essence, along
with other parameters together. They lower the interference and are easy to implement, but may
cause spectrum waste due to the existence of the guard-band.

4.3 Configuration Settings

Configuration settings typically refer to the optimal determination of transmission parameter sets
in terms of SF, TP, CF, and CR assigned to LoRa nodes or networks. Different transmission param-
eter sets resulting in different data rates and air time have a distinct effect over the network perfor-
mance or functionality, such as throughput and energy consumption unfairness across nodes. For
example, nodes far away from the gateway are tuned to use a larger SF to trade low data rate for
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Table 8. Summary of LoRa Configuration Setting Methods

Method Year Parameter Problem Formulation Methodology Real-time Dynamic Evaluation

EXPLoRA [31] 2017

SF

Data extraction rate optimization Heuristic algorithm ✗ ✗ S
CA-ADR [105] 2020 Minimizing the collision probability Choosing the smallest SF based on the power ✗ ✓ T, S

Loubany et al. [98] 2020
Throughput optimization
(traffic load×probability of success)

Adjusting SNR thresholds ✗ ✗ S

Mu et al. [109] 2020
Maximizing throughput based on
the dataset containing RSS, SNR, SF, etc.

K-Nearest Neighbors ✓ ✓ T

FADR [1] 2018

SF, TP

Fair data rate distribution based on DER Allocation based on the average RSSI values ✗ ✗ S

Liando et al. [89] 2019 Node lifetime model
Allocation based on the distance and
lifetime threshold

✗ ✓ T

Amichi et al. [5] 2020 Short-term average rate modeling
Matching theory for SF,
constrain approximation for TP

✗ ✗ S

DyLoRa [87] 2020 Symbol error and energy efficiency model
Traversing and comparing all combinations
in the prediction model for optimal settings

✓ ✓ T

Reynders et al. [127] 2017

CF, SF, TP

Packet error rate fairness
Allocation based on path loss values
and SF distribution under TP

✗ ✗ S

RS-LoRa [129] 2018
RSS value restriction
and packet error rate fairness

Two-step lightweight MAC scheduling ✗ ✗ S

EF-LoRa [52] 2019 Max-min energy fairness optimization Greedy heuristics algorithm ✗ ✗ S

Su et al. [142] 2020
Maximizing system
and node energy efficiency

Matching theory for channel,
heuristic algorithm for SF,
and optimization algorithm for TP

✗ ✗ S

Bor et al. [14] 2017 SF, BW, CR, TP PRR measurement Traversing and comparing all combinations ✗ ✓ T

Liu et al. [96] 2019 CF, TP
MDP model characterizing harvested energy
and channel conditions

ECAA for channel,
dynamic programming for TP

✓ ✓ S

AdapLoRa [53] 2020 CF, SF, CR, TP
Symbol-level network model
for network lifetime optimization

Allocation adaption acceptance depending on
the comparison with the lifetime threshold

✗ ✓ T

Chime [47] 2020 CF
Optimal frequency estimation
across base stations collaboratively

Multipath signal disentangling
and recombination

✗ ✓ T

EARN [117] 2020 SF, TP, CR
Tradeoff between the delivery ratio
and energy consumption

Allocation based on
the aggregated load status for SF and SNR

✗ ✓ S

(S: Simulation, T: Testbed).

long range, but resulting in longer transmission time and higher energy consumption. Hence, an
effective network configuration setting method is crucial for the appropriate division of channel
resources and enhancing the throughput and energy efficiency of LoRa networks.

Specifically, the existing configuration settings methods [52, 87] mainly achieve the optimal
parameter sets determination of LoRa nodes according to the deployment topology, communi-
cation behavior, and channel conditions. The main process consists of three steps: first, taking
the throughput and energy consumption/fairness as the optimization goal; second, formulating
a system or link model based on the optimization problem; third, adopting specific optimization
methods based on current system model. It is noted that the data rate of LoRa radio is defined by
the combination of SF, BW, and CR, thus the ADR method is also regarded as the configuration
setting category. Table 8 summarizes the existing LoRa configuration setting methods.

SF Allocation Methods. Loubany et al. [98] formulated the throughput optimization problem
under consideration of the capture effect and proposed an adaptive SF allocation algorithm via
adjusting the SNR thresholds. Mu et al. [109] proposed a K-Nearest Neighbors (KNN)-based SF
allocation method, containing an initialization and operation period. In the initialization period,
nodes are set to utilize all SF configurations in a round-robin fashion, and the gateway creates
a dataset containing link characteristics (i.e., RSS, SNR), SF configurations, and packet reception
results. In the operation one, a KNN algorithm is adopted to select optimal SF under the given link
conditions or to meet the application reliability requirements via voting threshold adjustment.
Cuomo et al. [31] proposed a heuristic SF allocation algorithm termed EXPLoRA to improve the
Data Extraction Rate (DER) and achieve air time fairness. Specifically, EXPLoRA first calculates
the available SF list of each node based on the RSSI and the sensitivity of each SF and then utilizes
an “ordered waterfilling” strategy to allocate the SF to balance the air time. Marini et al. [105]
proposed a collision-aware ADR (CA-ADR) algorithm. CA-ADR first calculates the maximum
number of nodes under specific allocated SFs based on the given packet success probability that
considers the link-level performance and the collision probability and then determines the smallest
available SF for each node based on the average received power.
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SF and TP Allocation Methods. Liando et al. [89] modeled the energy consumption of LoRa
nodes for SF and TP allocation. Amichi et al. [5] formulated a joint SF and power allocation
problem as the uplink short-term average rate modeling featuring SF quasi-orthogonality. Specifi-
cally, they achieved SF assignment sub-question under fixed TP via a low-complexity many-to-one
matching algorithm and TP allocation under fixed SF via two types of constraints’ approximation.
Abdelfadeel et al. [1] proposed a Fair Adaptive Data Rate (FADR) algorithm. Specifically, FADR
derives a fair data rate distribution on the basis of DER across nodes, then adopts a genetic algo-
rithm for the optimal SF distribution and adjusted TP within a safe margin. Li et al. [87] proposed
a Dynamic LoRa transmission control system termed DyLoRa, which derives an energy efficiency
characterization model based on transmission parameters including TP, SF, and SNR. In particular,
DyLoRa gateway first extracts the average SNR of the last pre-defined number of data packets as
an indicator of link quality, then traverses and inputs all combinations SF and TP with this average
SNR to the prediction model for the optimal setting.

CF, SF, and TP Allocation Methods. Reynders et al. [127] derived the optimal SF distribu-
tion under the constrained TP to minimize collision probability and also assigned nodes from long
distances that possess large path loss values to different frequency channels to avoid near-far prob-
lems for fairness. In their further work [129], they proposed RS-LoRa, which employs a two-step
lightweight scheduling. Specifically, the gateway specifies the allowed TPs and SFs for each chan-
nel, which are restricted by the RSS value and collision probability, respectively. Then, the nodes
traverse to find a proper channel, among which nodes divided into one group choose similar param-
eters to alleviate the capture effect. Gao et al. [52] proposed EF-LoRa, formulating energy fairness
issues as a max-min optimization problem and utilizing a greedy heuristics algorithm to allocate
frequency channel, SF, and TP parameters. Specifically, EF-LoRa adopts a multiple-gateway system
model considering various LoRa network features such as interference, the randomness of MAC
protocol, and capacity limitation of gateways, to serve energy fairness optimization. However,
EF-LoRa runs only once at the first time of network deployment. In Reference [142], they formu-
lated user scheduling as a two-sided many-to-one matching problem with peer effects to achieve
channel allocation and allocated SF via a heuristic algorithm. Then, they performed TP allocations
under maximizing system and nodes’ minimal energy efficiency via lower bound approximation
and sequential convex programming, respectively.

Other Parameters Allocation Methods. Gadre et al. [47] proposed Chime, where the node
sends one packet across multiple base stations at one frequency, and the stations can collabora-
tively determine the optimal frequency. Specifically, Chime first requires synchronizing distributed
base stations to avoid the time-varying and long-lasting phase errors, then models the signals and
disentangles different signal multipath. Finally, Chime recombines these separated signal com-
ponents to estimate the optimal one. Bor et al. [14] proposed a simple link probing regime that
traverses and approaches the optimal parameter configuration based on the measured PRR. Liu
et al. [96] adopted a Markov Decision Process (MDP) model to formulate the harvested energy
and channel conditions for energy harvesting-based LoRa networks. Besides, they proposed an
efficient channel allocation algorithm (ECAA) based on a many-to-one matching game by
enabling users to self-match properest ones and perform optimal TP allocation via solving the
dynamic programming problem. Current methods mainly focus on static resource allocation, Gao
et al. [53] proposed AdapLoRa, an adaptive allocation system for CF, SF, TP, and CR parameters
based on the dynamic link conditions on the contrary. Specifically, AdapLoRa adopts a symbol-
level fine-grained network model featuring the properties of enhanced error correction scheme
and packet reception by multiple gateways to periodically estimate the network lifetime under
different resource allocations and determines whether to perform this adaption through compari-
son with the threshold rather than always seeking the optimal setting. Park et al. [117] formulated
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the link performance as an energy per packet (EPP) model and then proposed an enhanced
greedy ADR mechanism with CR adaptation termed EARN based on the aggregated load status
for each SF and SNR. Besides, EARN exploits adaptive SNR margin to withstand the dynamic link
changes.

Apart from the aforementioned configuration setting studies at the node level, several methods
aim at the network topologies and deployments at the network level, such as gateway planning
[123, 144] and packet offloading [43]. Rady et al. [123] first adopted a K-means clustering-like
method or a grid and spatial method to determine the optimal gateway location under the network-
aware or network-agnostic gateway deployment, respectively. Then, they performed link alloca-
tion tasks, i.e., many-to-one mappings between node and gateway. Specifically, such tasks are con-
ducted based on the minimal distance or the corresponding RSSI value under the unconstrained
gateway capacity while using the integer linear programming (NP-complete) approach under the
constrained one. Sun et al. [144] proposed a deleted greedy algorithm for optimal gateway number
and location search for heterogeneous LoRa nodes and also considered SF allocations.

In general, the existing configuration setting methods utilize network resources to the great-
est extent based on the link conditions and network deployments, which greatly improved the
network throughput, energy efficiency, and fairness. Such methods generally take the throughput
and energy performance indicator as a starting point for problem formulation and modeling. Then,
comprehensive and careful considerations of various effect factors are required, such as dynamic
link characteristics and signal interference, along with their representation margin. Among these
methods, SF, TP, and CF are the most-chosen parameters, which are mainly allocated based on the
packet SNR and node distance information. However, the algorithm complexity, convergence time,
and dynamic adaption deserve to be tackled for further improvements.

Apart from the aforementioned methods on LoRa communication, other works have made con-
tributions with respect to the network synchronization strategies [124], data forwarding schemes
[25], different network topologies such as mesh [83, 115] and tree [149].

5 LORA SECURITY

With massive deployments of LoRa networks recently, the security and privacy issues are receiving
great attention. Security requires the hardware, software, and data flow in LoRa networks are
protected, and the whole system can operate regularly and continually. However, maintaining the
confidentiality, integrity, and availability (CIA) of LoRa networks faces severe challenges due
to the openness of the transmission medium and the instability of the network structure. To this
end, we survey LoRa security-related works, including vulnerability analysis and corresponding
countermeasures, coupled with the emerging PHY layer security methods.

5.1 Vulnerabilities and Countermeasures

The vulnerability is the weakness that an attacker can exploit to perform unauthorized actions,
modify data, or make a system unavailable, while the countermeasure is the defense taken against
such attacks. The self-explanatory importance of cyber security and the wide popularity of LoRa
networks have stimulated the rapid development of the attacks and defenses designed for LoRa
networks. The first step in conducting LoRa security is to understand the network security require-
ments. CIA Triad is typically used to describe the security of IoT applications:

• Confidentiality. Data is only authorized to legitimate parties, while not leaked to others.
• Integrity. Data is ensured not to be tampered or destructed during the period of transmis-

sion and storage, or can be discovered quickly after malicious use.
• Availability. Data can meet the standards for use when needed.
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Table 9. Summary of LoRa Vulnerabilities and Countermeasures

Vulnerability Operation Countermeasure

Eavesdropping Retrieving private information stealthily Key generation [50]

C
o

n
fi

d
e
n

ti
a

li
ty MITM Attack Creating separate links to both legitimate parties Authentication [163]

Replay Attack Sending a former eavesdropped packet
Key-related solution [79, 147, 153],
random token [110], authentication [163]

Side-channel Attack
Recovering secret key information from additional
signal features (e.g., power, electromagnetic leaks)

Key management [60, 78]

Spoofing Attack Impersonating legitimate parties to access and tamper data Authentication [163], RFFI [132]

In
te

g
ri

ty

Covert Channel
(e.g., CloakLoRa [69], EMLoRa [137])

Embedding hidden information
into the covert channel

Demodulation examination,
gateway collaboration [68]

Wormhole Attack
Creating a high-speed link tunnel
between two malicious parties

Beating jammer reaction time [7],
message relation [66]

Beacon Synchronization Attack Sending fake beacons
Beacon authentication key [17],
cryptographic signature [184]

A
v

a
il

a
b

il
it

y Delay Attack Malicious frame collision and delayed replay RFFI [57]

(Distributed) DoS Attack
Causing the link overload
or triggering network crash (from multiple sources)

Blockchain [67, 90]

Jamming Attack
Disrupting the legitimate communication
using powerful interference radio

Traffic analysis [7], intrusion detection [33],
collision decoding [68], passive packet sniffing (LoRadar) [28]

Table 9 lists the common attacks to LoRa networks from the perspective of the violation of the CIA
Triad, along with the proposed corresponding countermeasures.

5.1.1 Vulnerabilities. Studying network vulnerabilities shows significant importance, which
can better serve the corresponding defenses. Thus, plenty of studies [6, 17, 18, 66, 184] have in-
vestigated the common attacks of networks, inclusive of replay, jamming, spoofing attacks, and so
on. Besides, some vulnerabilities specific to LoRa networks [69, 137] are discovered. Hou et al. [69]
revealed the existence of a covert channel using a modulation scheme orthogonal to CSS over LoRa
PHY layer, which is transparent and covert to current security mechanisms. Specifically, they pro-
posed CloakLoRa to embed hidden information into the covert channel utilizing Amplitude Mod-

ulation (AM), where the malicious attacker could decode the hidden data based on the RSS while
the transmission between legitimate parties is not affected. There is a common belief that electro-

magnetic (EMG) covert channel is a common short-range attack, as EMG radiation is easily atten-
uated. However, Shen et al. [137] proposed a resilient EMG covert channel termed EMLoRa, which
reshapes EMG radiation into LoRa-like chirps through AM, hence the receiver can decode and
steal the sensitive data from a long distance. Specifically, EMLoRa enables three attacks in terms
of wide-area data exfiltration, penetrating Faraday cage, and localization of air-gapped devices.

5.1.2 Countermeasures. LoRa networks are vulnerable to kinds of attacks as investigated in Ref-
erences [6, 184], hence plenty of attack defense and prevention methods are proposed accordingly.

Countermeasures against Replay Attacks. The replay attack refers to when the attacker
sends a former eavesdropped packet intact (the receiver node has received before) to deceive the
receiver. The attacker does not need to obtain the explicit raw data but replays some data pack-
ets to destroy the correctness of authentication, which burdens the link load and induces some
specific former-packet effects. Traditional solutions include adding nounces, timestamps, session
ID [178]. For LoRa, replay attack defense methods mainly focus on DevNonce and NwkSKey of
the LoRaWAN packet header in the OTAA join procedure. DevNonce is a random number gener-
ated from nodes, while NwkSKey is the session key that changes every time the joining process is
completed. Na et al. [110] proposed a replay attack scenario occurring in the join request transfer
process and a token-based countermeasure against it accordingly. The random token is the first
six bits of NwkSkey, which is used to be XOR-ed with the DevNonce and MIC fields of the join
request packet. However, the problem of missing NwkSkey is ignored when the device resets. The
network server needs to store all DevNonce values used in the previous joining process, such that
requests from benign nodes will not be mistaken as replay attacks [153]. To this end, Kim and
Song [79] defined the initial and non-initial join requests and checked the validity of NwkSKey of
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non-initial join requests and DevNonce of initial ones to prevent replay attacks. Since checking the
DevNonce value only is not reliable [153], Sung et al. [147] also utilized RSSI and a hand-shaking
technique to protect networks.

Countermeasures against Jamming Attacks. Jamming attack, a subset of Denial of Ser-

vice (DoS) attack, refers to deliberately disrupting or preventing legitimate communication based
on malicious interference. Such attacks can be addressed by efficient intrusion detection/filtering,
traffic analysis, and verification. Several methods [28, 68] were proposed for anti-jamming attacks
for LoRa networks. Aras et al. [7] proposed three jamming attack techniques and a series of com-
plementary countermeasures such as maximum use of channel hopping and real-time traffic anal-
ysis. Danish et al. [33] proposed a novel LoRaWAN-based Intrusion Detection System (LIDS)

involving two LIDS algorithms, namely, Kullback Leibler Divergence and Hamming Distance, de-
ployed on gateways to monitor the real-time traffic distribution for the comparison with those
from baseline to prevent from jamming attacks. Synchronized jamming chirps will make packets
not be decoded in the time domain, hence Hou et al. [68] proposed a prevention and error re-
covery method by leveraging the signal strength difference. With massive deployments of LoRa
networks, Choi et al. [28] proposed a passive packet sniffing framework for MAC layer termed
LoRadar. LoRadar cannot decode payload data but extracts a large number of parameter informa-
tion and deployment statistics related to the link quality, which is utilized for jamming detection,
RSSI-based device localization, and so on.

Countermeasures against Other Attacks. Apart from the aforementioned studies, several
other attack defense methods [57, 163] were proposed. Wang et al. [163] proposed a lightweight
node authentication method termed SLoRa, using fine-grained CFO resulting from hardware im-
perfections and spatial-temporal link signature relying on positions of nodes, to prevent from vari-
ous attacks such as spoofing, MITM, DoS attacks. Specifically, they proposed a CFO compensation
algorithm adopting linear fitting for received up-chirps to mitigate the noise’s randomness and
derived a conventional de-convolution operation-less link signature extraction scheme. However,
SLoRa is insensitive to drift caused by weather and environmental conditions. Gu et al. [57] pro-
posed a synchronization-free data timestamping approach based on the signal arrival time at the
gateway due to the star topology of LoRa networks rather than multi-hop and high time accuracy
requirements (µs level). This approach is vulnerable to the frame delay attack, so they designed a
LoRaTS gateway to track the natural frequency deviation of the nodes based on the linear regres-
sion and least-squares methods. Further, they proposed a Pseudorandom Interval Hopping scheme
to prevent from zero frequency bias attacks to maintain security. Besides, several key management
schemes [60, 78] focus on the LoRaWAN key derivation, distribution, update, and destruction pro-
cess to prevent from side-channel attacks.

Overall, the existing vulnerabilities and countermeasures complement each other to make a sig-
nificant contribution to the security of LoRa networks. In addition to attacks common to networks,
attacks specific to LoRa specific networks are an open and trending research area, coupled with the
combination with cross-technology. Covert channels [69, 137] have been proven as threatening at-
tacks to LoRa networks, where there are no effective countermeasures against EMLoRa [137]. The
existing countermeasures mainly focus on the packet header information [79, 110, 153], passive
traffic analysis [7, 28], or authentication system [57, 163] to improve the safety of LoRa networks.
However, the effectiveness and energy efficiency of such security defense mechanisms are key
factors that need attention.

5.2 PHY Layer Security

PHY layer security methods essentially exploit the physical characteristics of the wireless channel
to achieve secure transmission. The traditional secure key establishment between two parties can
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Table 10. Summary of LoRa PHY Layer Security Methods

Method Year Methodology Performance

K
e
y

G
e
n

e
ra

ti
o

n Feature Quantization Reconciliation Privacy Amplification KGR (bit/s) KAR(%)

LoRa-Key [175] 2018 RSSI Multilevel Compressive sensing SHA 18–31 98–100
Zhang et al. [187] 2018 RSSI Differential Secure sketch Hash function - 95–96
Ruotsalainen et al. [133] 2019 RSSI Threshold Secure sketch with BCH code SHA-256 - 71–85
Gao et al. [50] 2021 RSSIr Multilevel Compressive sensing SHA-256 13.8 86
LoRa-LiSK [76] 2021 RSSI Multilevel BCH code SHA-256 - 80–90
Vehicle-Key [182] 2022 arRSSI Multilevel Autoencoder SHA-256 14–16 98–99

Input Learning Model Supervision Manner Accuracy(%)

R
F

F
I

Robyns et al. [132] 2017 Signal sample MLP, CNN Supervised, zero-shot
59–99 (identical vendors),
99–100 (distinct vendors)

Jiang et al. [75] 2019 Differential constellation trace Clustering of Euclidean distance Unsupervised 63–99
SLoRa [163] 2020 CFO and spatial-temporal link signature SVM Supervised 97 (indoor), 90(outdoor)
DeepLoRa [4] 2021 IQ, amplitude-phase, and spectrogram CNN, RNN-LSTM Supervised 89(RNN), 99 (2D CNN)
Shen et al. [138] 2021 IQ, amplitude-phase, and spectrogram CNN Supervised 98

(BCH: Bose–Chaudhuri–Hocquenghem, SHA: Secure Hash Algorithm).

be completed by Public Key Cryptography (PKC), but PKC schemes require a Public Key In-

frastructure (PKI) and are computationally expensive. Another solution is the Pre-Shared Key

(PSK) scheme, but it lacks scalability [178]. Thus, plenty of methods [50, 138] consider PHY layer
features as a supplement or replacement of the upper-layer cryptography method for the consid-
eration of network security. We divided them into two categories: PHY layer key generation and
Radio Frequency Fingerprinting Identification (RFFI) methods. Table 10 summarizes the ex-
isting LoRa PHY layer security methods.

5.2.1 Key Generation Methods. Key generation, also called key agreement or establishment,
refers to the process of generating the same cryptographic key based on the PHY layer character-
istic parameters (e.g., RSSI, CSI, phase) of the wireless channel through common channels between
two legitimate parties that have no prior secret. Its feasibility is mainly due to the characteristics
of channel reciprocity, spatial variation, and temporal variation, which ensure the uniqueness and
randomness of the generating keys. Channel reciprocity means that the channel characteristics
between two communication nodes are almost identical. Spatial and temporal variation mean that
the radio channels between two nodes vary with the location and the environment across time.

Key generation is a promising technique to maintain secure communications for LoRa nodes
recently [76, 133]. It generally includes the following four stages: channel probing, quantization,
reconciliation, and privacy amplification. Two legitimate nodes send messages end-to-end and
measure some kinds of channel features, mainly RSSI information for LoRa. The measured value
is then converted into a string of key bits using different quantization methods. Reconciliation
is for discarding or correcting the bit differences, and privacy amplification is designed for han-
dling information leakage issues to the attacker. The feasibility of key generation of LoRa was
first verified in Reference [174]. Zhang et al. [187] proposed a differential quantization method,
which discards the RSSI value whose variation with the adjacent value is smaller than the set RSSI
resolution against the measurement imperfection. LoRa-Key [175] is the first RSSI-based key gener-
ation method for LoRa, which employs several signal processing techniques (e.g., outlier detection,
linear interpolation) to improve the key generation rate and a novel compressive sensing-based
reconciliation approach to reduce the key disagreement rate. Rather than RSSI, Gao et al. [50] em-
ployed RegRssiValue (RSSIr ) provided by LoRa transceivers for LoRa key generation. Specifically,
RSSIr is the raw instantaneous strength estimation, which provides better channel estimation com-
pared with RSSI and whose distributions produced by the legitimate parties are extremely similar.
Furthermore, they adopted a random waypoint model to derive an optimal window size, which
can balance the channel reciprocity and entropy. To further improve the correlation of channel
measurements, Yang et al. [182] exploited the mean value of adjacent RSSIr (arRSSI) as a novel
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feature for key generation in Internet of Vehicles (IoV) scenarios. They also proposed a Bi-LSTM
model for prediction and an autoencoder-based reconciliation method for mismatch correction.

PHY layer key generation for LoRa could maintain the network security without the need for
fixed infrastructure or secure communication channels. Also, it requires less storage and comput-
ing power compared to asymmetric cryptographic solutions. However, due to the characteristics
of the low data rate and high energy efficiency of LoRa technology, the issues of low channel reci-
procity and probe packet exchanging make key generation for LoRa challenging. Besides, spatial
and temporal variations of the radio channel require multiple key establishment times for the LoRa
nodes, which is not a long-term security mechanism. Additionally, current key generation meth-
ods are almost designed for two legitimate parties [50, 175]; group key generation among a large
number of nodes is still an open problem [178].

5.2.2 Radio Frequency Fingerprinting Identification Methods. Device identification is essential
for IoT security to allow legitimate users to access the network while preventing malicious users.
Recently, the emerging PHY layer RFFI technique uses features extracted from radio signals to
uniquely identify devices. Its essence is to use the inherent tiny defects (e.g., inphase and quad-
rature imbalance, frequency/sampling offset) in the analog circuit of radio device hardware to
generate a unique fingerprint of this device, which is impossible to imitate by adversarial devices.
As hardware defects are interrelated and complex, hand-crafted low-dimensional features are of-
ten unable to generate distinguishable and high-level fingerprints effectively, machine learning
algorithms are utilized to make up for this issue. RFFI generally includes two stages, namely, train-
ing and classification. In the training stage, the trainer performs feature extraction (e.g., IQ, CFO,
spectrogram) after collecting enough data packets. Then, these features are fed into the classifier
for training. While in classification one, after receiving the data packet and feature extraction, the
classifier infers the identity of the device.

As the pioneering work of LoRa PHY layer fingerprinting, Robyns et al. [132] proposed two
per-symbol supervised machine learning models, i.e., a Multilayer Perceptron (MLP) and a
Convolutional Neural Network (CNN). These models process the entire signal instead of
low-dimensional features of the local one to distinguish devices from different manufacturers.
Besides, a zero-shot learning model was proposed to consider the unknown device cases. Differ-
ently, Jiang et al. [75] adopt the differential constellation trace figure as the feature and utilize
an unsupervised method based on the Euclidean distance comparison. Gu et al. [57] designed a
LoRaTS gateway to track the radio frequency biases of the nodes based on the linear regression
and least-squares methods. Wang et al. [163] proposed SLoRa, an authentication method using
fine-grained CFO and spatial-temporal link signature of different nodes’ positions. SLoRa collects
and inputs CFO and signature features into an SVM model for training in the offline stage. Then,
such features from the new node are inputted into the model for authentication in the online one.
Al-Shawabka et al. [4] first collected a dataset containing LoRa waveform data from 100 bit-similar
devices and then proposed a deep learning-based data augmentation technique termed DeepLoRa.
Specifically, DeepLoRa focuses on three different representations, i.e., IQ, amplitude-phase, and
spectrogram of the signal preamble or payload, as the input of the deep learning models. Besides,
DeepLoRa generated and applied finite input response (FIR) filter taps to transform the original
dataset, which acts as a data augmentation technique and increases channel diversity. Shen et al.
[138] proposed a CNN taking the IQ, amplitude-phase, and spectrogram of LoRa signal as input,
among which spectrogram achieves the best performance. Besides, they revealed that the drift of
the instantaneous CFO will affect the classification results and degrade system stability. To this
end, they proposed a CFO estimation and compensation algorithm, where a CFO database was
generated to help the hybrid classifier use the estimated CFO to calibrate CNN’s softmax output.
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In general, RFFI methods rely on the hardware imperfection, where the derived fingerprint
is unique to maintain the network security preventing from spoofing or counterfeiting attacks.
Compared with traditional cryptography-based security solutions, RFFI methods do not impose
additional computational burdens on devices for authentication. The existing RFFI methods
[75, 138, 163] have achieved more than 90% identification accuracy due to the representation learn-
ing capability of deep learning models. However, they are not friendly to newly join-request legit-
imate devices, resulting in poor scalability. In addition, since most RFFI methods seek stable and
discriminative features from the entire LoRa signal samples, using instantaneous features is still
challenging.

Apart from the aforementioned studies, several other studies [67, 90, 113] focused on blockchain-
enabled LoRa networks for trust verification and security issues. Blockchain is a Peer-to-Peer

(P2P) distributed and decentralized ledger technology. Its essence is a shared database that
contains specific and verifiable records of each transaction, possessing the characteristics of
non-counterfeiting, traceable, and transparent. Lin et al. [90] proposed the first conceptual
blockchain-enabled LoRaWAN infrastructure design, which is built upon many LoRaWAN
network servers that communicate with each other via P2P. Each network server is added the
blockchain management components of packaging transaction, hashing broadcasting, verification,
making and storing blocks to perform the message flow process. Niya et al. [113] proposed a
blockchain-enabled LoRaWAN network based on Ethereum, an open-source, public blockchain
platform supporting smart contracts to store data. Specifically, Ethereum Light Clients (ELCs)

were deployed in the LoRa nodes or gateways for the data transmission to the application server.
Hou et al. [67] proposed HyperLoRa, a blockchain-enabled LoRa system with edge computing abil-
ity. In particular, HyperLoRa possesses two ledgers in the central could and getaway to process the
delay-tolerant application data with large size and the time-critical network data with small size,
respectively. Besides, HyperLoRa utilizes edge computing technology to migrate the works of the
join procedure and application packages processing from the network servers. Blockchain-enabled
LoRa methods mitigate security risks and solve authentication problems, but are still immature.

6 LORA-ENABLED APPLICATIONS

The wide deployment of LoRa has inspired a wide range of applications. In this section, we review
these applications from four categories: backscatter, sensing, integration with heterogeneous wire-
less technologies, and other applications.2 Specifically, backscatter refers to the passive reflection
and modulation of incident RF signals for transmission. LoRa sensing captures the LoRa signal
variance during propagation to achieve specific kinds of task sensing, such as respiration moni-
toring and localization. The integration with heterogeneous wireless technologies aims to explore
their interoperability, which involves wireless co-existence (WCE) and cross-technology com-

munication (CTC). Other applications, such as smart city, industry, agriculture, and healthcare,
are reviewed at the end of this section.

6.1 Backscatter

Backscatter has been widely used in long-distance, low-cost communication systems such as Ra-

dio Frequency Identification (RFID) tags and commodity Wi-Fi access points. As the repre-
sentative example, a RFID system typically relies on readers and tags, where the reader transmits
high-power RF signals as queries and the tag responds by changing the antennas’ impedance. An-
other typical backscatter communication system is the ambient one, which does not require a

2Inspired by the LoRa survey [85], we continuously adopt “application” as the classification criterion of the references
about backscatter, sensing, and integration with heterogeneous wireless technologies.
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Table 11. Summary of LoRa Backscatters

Method Year Excitation Signal Range Consumption Parallel Decoding COTS Tag Compatibility

LoRa Backscatter [148] 2017 Dedicated 2,800 m 9.25 μW ✗ ✗
LoREA [160] 2017 Dedicated 3,400 m 70 μW ✗ ✓
PLoRa [119] 2018 Ambient 1,100 m 220 μW ✗ ✗
NetScatter [64] 2019 Dedicated - 45.2 μW ✓ ✗
Aloba [59] 2020 Ambient 250 m 0.3 mW ✓ ✓
PolarScatter [141] 2020 Dedicated 1,500 m 71 μW ✗ ✗

FD LoRa Backscatter [77] 2021 Dedicated
300 ft (LOS),

4,000 ft (NLOS)
3.04 W ✗ ✓

P2LoRa [74] 2021 Ambient 2,200 m 320 μW ✓ ✓

dedicated signal source but explores the available RF signals nearby (e.g., RF or LoRa signals from
active nodes), thus becoming the most energy-efficient and the lowest cost solution among them.

LoRa backscatter [73, 141, 160] is becoming a promising technology recently, due to its high
sensitivity and resilience against both in-band and out-of-band interference, Typically, a LoRa
backscatter system consists of three parts: transmitters, receivers, and backscatter tags. When
the transmitter sends excitation LoRa signals, a backscatter tag uses the on-board circuit (e.g.,
programmable logic units) to modulate RF signal (e.g., amplitude, frequency, phase) under a
modulation mechanism (e.g., OOK), and then reflects the signal. The receiver captures the re-
flected backscatter signal and decodes the information. Table 11 summarizes the existing LoRa
backscatters.

As the pioneering work, Talla et al. [148] proposed LoRa Backscatter, which receives and utilizes
the single tone transmitted by a single RF source to synthesize the CSS signal for decoding of the
receiver. Specifically, LoRa Backscatter adopts a hybrid digital-analog backscatter design that uses
the digital domain to create a frequency plan of a Voltage-Controlled Oscillator (VCO) for the
continuously varying CSS signal and then map it to the analog domain via a converter. In addition,
a harmonic cancellation mechanism was proposed to improve spectral efficiency. Hessar et al. [64]
proposed Netscatter to decode large-scale concurrent backscatter transmissions by using only one
single FFT operation. In particular, they introduced a distributed CSS coding mechanism, where
each concurrent node is assigned to a different chirp cyclic shift and utilizes OOK to transmit bits.
They also considered the Near-far problem using power-aware and power-adaption methods and
leaves gaps in cyclic shifts to be more robust in time synchronization among nodes. Instead of
using dedicated single-tone RF as external excitation signals in References [64, 148], Peng et al.
[119] proposed Passive LoRa (PLoRa), which modulates an ambient LoRa signal into a new chirp
signal and shifts it into a different channel. Specifically, PLoRa is composed of a low-power packet
detection circuit, a blind chirp modulation algorithm, and an energy management component.
The packet detection circuit aims to reduce the sampling rate of the input signal and perform
cross-correlation operation between input signals and the pre-stored preambles. The modulation
algorithm is to generate FSK modulated baseband signal and multiply it with incoming LoRa
chirp. To disentangle and demodulate the weak backscatter signal from the strong excitation
signal, Guo et al. [59] proposed Aloba, which first detects ambient LoRa excitation signal using
unique RSS pattern from other irrelevant signals or noise, then utilizes OOK to modulate the data
and reflects to the receiver. The receiver decodes the carrier signal by leveraging the capture effect
and transforms it into a constant sinusoidal tone, so the backscatter signal can be demodulated
via tracking the amplitude and phase variation. To achieve ubiquitous backscatter connectivity,
Katanbaf et al. [77] designed the first Full-Duplex (FD) LoRa backscatter reader. FD LoRa
Backscatter consists of a single antenna hybrid coupler along with a two-stage tunable impedance
network for carrier and offset cancellation, and a microcontroller for implementing the adaptive
tuning algorithm. Since PLoRa and Aloba can decode a small number of concurrent backsacatter
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Table 12. Summary of LoRa Respiration Monitoring Methods

Method Year Sensing Model Methodology Antenna Array Through-wall #target Range Metric

Zhang et al. [185] 2020
Phase difference of signal ratio
of received signals at two antennas

Modeling and quantifying 2 directional ✓ 1 25 m
Mean absolute error:
0.1–0.37 RPM (5–25 m)

Sen-fence [170] 2020
Phase difference of signal ratio
of received signals at two antennas

Virtual fence, search algorithm 2 directional ✓ 1–3 50 m
Average error:
0.2–0.7 RPM (1–3 interferer)

Xie et al. [171] 2021
Phase difference of signal ratio
of received signals at two antennas

Search algorithm,
time-domain beamforming

3 directional ✓ 1 75 m
Average absolute error:
0.1–0.6 RPM (1–7 wall)

Palantir [73] 2021
Phase difference of
backscatter and direct path signal

OOK-based modulated LoRa backscatter
(signal shaping, clustering)

1 omni-
directional

✗ 1 100 m
Median deviation:
4.39–11.65% (10–100 m)

Zhang et al. [186] 2021
Dividing beamforming signal by
beam-nulled one, phase of dynamic
path signal mapping distance

Beamforming, direction-frequency
spectrogram pre-processing,
multi-target detection

4 directional ✓ 2–5 24 m
Accuracy:
98.12–99.75% (1–5 targets, 10 m),
96.46–99.62% (8–24 m, 2 targets)

(RPM: Respiration Per Minute).

packets, Jiang et al. [74] proposed an ambient Passive and Parallel LoRa backscatter design
termed P2LoRa. Specifically, P2LoRa shifts the ambient LoRa signal at a small certain frequency to
modulate the data in the backscatter signal and concentrates the leaked energy in the frequency
and time domain to improve its SNR. Then it utilizes a two-level parameter estimation method
to reconstruct and eliminate the in-band excitation signal accurately and adopts a window-based
method to eliminate the interference to perform parallel decoding.

So far, current LoRa backscatter systems have significantly improved the communication range
and throughput of LoRa networks at a low energy cost. Ambient excitation signals [59, 74, 119] get
rid of the limitation of dedicated excitation signal source, low-power packet detection approaches
[74, 119] achieve long-term deployment, parallel decoding [59, 64, 74] enables simultaneous com-
munications among multiple nodes. However, the existing LoRa backscatter designs still face some
challenges in terms of high-range packet detection, simple backscatter modulation mechanism at
the tag side, out-of-band LoRa signal interference, and compatibility with COTS devices.

6.2 Sensing

Wireless sensing is an emerging technology of acquiring information about a remote object and its
characteristics using ambient wireless signals. The rationale behind wireless sensing is to capture
the signal variance (e.g., phase, RSSI) of the wireless signal itself (e.g., RFID, Wi-Fi, LoRa) reflected
from the targets with some specific movements. Compared with transitional wireless signals, LoRa
possesses strong penetration capability to perform through-wall sensing tasks and long sensing
range to fill the gap of Wi-Fi (3–6 m), RF (3–6 m), and acoustic (less than 1 m) signals [185]. Thus,
a large number of LoRa sensing methods [92, 185] were proposed recently. We review the existing
LoRa sensing works, including respiration monitoring and localization.

6.2.1 Respiration Monitoring. Studies on LoRa-based respiration monitoring generally model
the propagation and reflection of the LoRa signal, then adopt a series of signal processing tech-
niques to quantify a mapping between specific signal variation (e.g., phase, amplitude) and the sens-
ing goal (e.g., distance). Table 12 summarizes the existing LoRa respiration monitoring methods.

Zhang et al. [185] achieved real-time LoRa sensing for the first time, including through-wall fine-
grained respiration and coarse-grained walking monitoring in the range of 25 m. Specifically, they
first derived a basic LoRa signal propagation model and utilized the ratio of received signals at two
antennas to cancel out noise and eliminate the random signal phase shift. They further quantified
the phase change of the signal ratio to capture the relationship with distances corresponding to tar-
get movements for sensing. Besides, they have conducted a comprehensive experiment concerning
the impacts of the target, distance, and environment. LoRa radio suffers surrounding interference
along with its long-distance communication, Xie et al. [170] proposed Sen-fence, which restricts
interference from outside the created virtual fence to mitigate it. In particular, Sen-fence first forms
a beam-shaped or spot-shaped virtual fence depending on the number of receiver, then maximizes
the movement-induced phase variation by adding a newly static signal purely in software. Such
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static signal needs to meet the requirements of tuning the phase difference between the static and
dynamic vectors to 180° and minimizing the amplitude of the composite signal. Finally, Sen-fence
confines the phase within the virtual fence based on the search algorithm of the optimal static
signal. However, Sen-fence requires the sensing area as prior knowledge and multiple receivers,
which limits sensing in mobile scenarios. In their further study [171], they increased the respiration
sensing range to 75 m, resulting from enlarging the target-induced phase variation and adopting a
time-domain beamforming method combining signals with different timestamps to increase SNR.

Jiang et al. [73] provided a cyclist respiration sensing method relying on OOK modulated LoRa
backscatter signal termed Palantir, which consists of four stages of preprocessing, signal shaping,
clustering, and sensing. Specifically, Palantir first demodulated the received direct path signal and
backscatter one by exploiting the capture effect. Then, Palantir performed signal shaping to obtain
the stable state samples, including amplitude shaping by leveraging a low-pass filter to resolve the
problem of amplitude instability and baseband removal by conjugate demodulation and curve fit-
ting to eliminate offset and drift. Then, Palantir adopts the dual clustering method to transfer
the state samples from the I-Q coordinate system to the logarithm of the amplitude-phase coor-
dinate system and performs cluster identification enabling consistent identification even if there
is a global mismatch, which resolves the challenge of spectrum leakage. Finally, Palantir achieves
sensing based on the derived phase difference between the vectors of the direct path signal and
the backscatter one. To enable multi-target sensing, Zhang et al. [186] proposed a LoRa multi-
antenna beamforming technology to separate the signals in the space domain. In particular, they
constructed a “beam nulling” signal as a reference and divided beamforming signal of different
directions with this beam-nulled signal, which can eliminate impacts of CFO and Sampling Fre-

quency Offset (SFO) for synchronization-free between transceivers and not corrupt the signal
amplitude or phase variation information. Moreover, they utilized the amount of phase rotation of
the location-independent dynamic path signal rather than the composite signal to determine the
chest displacement, thereby solving the location-dependent issue of the composite signal for respi-
ration monitoring. Apart from respiration monitoring, the aforementioned methods also achieved
walking [171, 185, 186] and gesture tracking [170].

In general, LoRa has greatly compensated for the short sensing range of conventional wireless
signals and achieved great improvements. The existing methods [170, 185] mainly focus on the sig-
nal modeling and processing to capture the phase difference among multiple antennas to achieve
fine-grained respiration monitoring sensing. Although backscatter signal [73] and beamforming
technique [171, 186] provide new possibilities on range expansion and multi-target sensing, there
still remain some challenges:

• Range. Sensing is more susceptible to channel quality compared with communication [73].
With range expansion, LoRa sensing systems will inevitably suffer from various and complex
interference, remaining challenging to be resolved.
• Multi-target. Signals from multiple targets will be interleaved and superposed, so a higher

complexity of the receiving antenna array and a more robust sensing model are required for
sensing. Besides, target mobility will bring additional challenges.

6.2.2 Localization. Target localization and tracking techniques primarily focus on four cate-
gories of information: Angle of Arrival (AoA) [92], Time Difference of Arrival (TDoA) [10],
RSSI [91], and amplitude [24]. AoA-based methods leverage the phase difference of a signal ar-
riving at multiple antennas for localization. The multipath can be effectively separated, but good
resolution and accuracy require large-scale antenna arrays at the receiver side. TDoA-based meth-
ods achieved localization using the time difference of the same signal arriving at multiple gate-
ways. High resolution can be achieved, but suffers from the measurement error and the limited
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Table 13. Summary of LoRa Localization Methods

Method Year Technique Antenna Array Synchronization Latency Range Error COTS Compatibility

μLocate [111] 2018 Backscatter 3 chip antennas Access Points 25–70 ms 60 m
1.5 m (outdoor),
0.3 m (indoor)

✗

WIDESEE [24] 2019 Amplitude-based 1 reconfigurable directional – –
53 m (outdoor),

20 × 42 × 85 m3 (indoor)
4.6 m ✗

SateLoc [91] 2021 RSSI-based 1 omnidirectional – 3 s 350 × 650 m2 47.1 m ✓
OwLL [10] 2021 TDoA-based Virtual multi-antenna arrays Base stations 20.97 s >500 m 9 m ✗

Seirios [92] 2021 AoA-based 2 × 2 MIMO Multiple Channels 0.24 s
100 m (outdoor),

25 m (indoor)
4.6 m (outdoor),
2.4 m (indoor)

✓

bandwidth. AoA and TDoA methods generally require clock synchronization between transceivers.
RSSI-based methods can be further divided into fingerprinting-based methods [91] and model-
based methods [12, 82]. They are generally effective, but have poor resolution. Besides, the
amplitude is utilized to deal with the multipath effect, which is simple and low-cost, but has
poor accuracy due to signal attenuation. Table 13 summarizes the existing LoRa localization
methods.

Chen et al. [24] proposed a localization prototype termed WIDESEE, which consists of a re-
configurable antenna system, a data collection and antenna control system, and a target detec-
tion and localization system. Specifically, the antenna system integrates horn directional antennas
and phased arrays for fast radiation mode switching and narrower beamwidth offering to fur-
ther reduce interference. The data collection and antenna control system is built on single LoRa
transceiver pair carried by a flying drone. WIDESEE exploits the power spectrum density (PSD)

for target detection after vibration noise elimination using a low-pass filter, then extracts direction-
related information from amplitude and isolates the target path from the interfering multipath to
achieve localization sensing. Lin et al. [91] proposed SateLoc, a LoRa localization system based
on the virtual fingerprints extracted from satellite images. Specifically, in the offline stage, Sate-
Loc trains a Random Forest (RF) using satellite images associated with labeled land-cover types
to generate an Expected Signal Power (ESP) map as a virtual fingerprinting for each gateway.
In the online one, SateLoc produces a location likelihood distribution for each gateway based on
its ESP map using the extracted RSSI and SNR from the received packets and adopts a weighted
combination strategy for joint localization. Besides, μLocate [111] designed a sub-centimeter sized
multi-band backscatter system, together with the extracted phase information for microwatt-level
localization.

As the narrow bandwidth of LoRa incurs low-range localization resolution, several methods
[10, 92] focused on the bandwidth expansion. Bansal et al. [10] proposed an Outdoor whitespace-

band LoRa Localization (OwLL) method based on the TDoA transformed by the measured phase
difference across antennas. Specifically, OwLL emulates wide bandwidth in a low-cost manner by
frequency hopping over wireless spectrum in TV whitespace and ISM frequency bands, where an
iterative maximum-likelihood algorithm is adopted to determine a small set of optimal frequen-
cies hopped rather than all possible ones. After ensuring phase synchronization with reference to
Chime [47], OwLL treats diverse spatial base stations as a virtual distributed array to mitigate the
impact of signal multipath and utilizes a particle filter as well as the prior measured phase and
TDoA to trilaterate LoRa clients. Liu et al. [92] proposed a super-resolution localization algorithm
termed Seirios. In particular, Seirios utilizes a novel interchannel synchronization algorithm to
increase the bandwidth, where ToneTrack [172] technique is for overlapped channels while a vir-
tual intermediate channel response is generated as a bridge is for non-overlapped channels. Then,
Seirios exploits both the original and the conjugate of the CSI measurements for AoA estimation
based on the ES-PRIT algorithm [70] to further increase the capacities for multipath resolution,
where the synchronized LoRa CSI value of multiple channels is obtained through the amplitude
and phase comparison between the received symbols with the pre-defined training ones.
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Table 14. Summary of LoRa WCE and CTC Methods

Method Year Heterogeneous Technology Methodology Performance Hardware Design COTS Compatibility

W
C

E

Zhang et al. [188] 2018 LoRa & NB-IoT Multi-module node design Range: 1.6 km ✓ ✗
Gao et al. [51] 2019 LoRa & NB-IoT Multi-module node design - ✓ ✗
LoFi [23] 2021 LoRa & Wi-Fi Spectrum reservation PRR: 98% ✗ ✓
PSR [143] 2021 LoRa & CT interference Symbol recovery PRR: 45.2%→ 82.2% ✗ ✓

C
T

C

Symphony [88] 2019 BLE and ZigBee→ LoRa GFSK and OQPSK modulation Range: >500 m ✗ ✓

XFi [95] 2020 ZigBee, LoRa→Wi-Fi Signal hitchhiking
Accuracy: >97%
under 8 parallel devices

✗ ✓

EMLoRa [137] 2021 EMG→ LoRa AM modulation Range: 130 m ✗ ✓
LoRaBee [139] 2021 LoRa→ ZigBee Correlation with payload data and RSS value Throughput: 281.61 bps ✗ ✓

In general, LoRa localization methods have achieved promising accuracy and resolution results
and greatly expanded the range compared with Wi-Fi and RFID signals. The existing localization
methods have attempted various features, such as amplitude [24], RSSI [91], angle [92], and time
[10]. Among which, RSSI can achieve the longest range, but amplitude, time, and angle information
can obtain higher resolution. Apart from attempting various features to expand the range, several
studies [10, 92] focus on the bandwidth expansion of LoRa to improve the resolution. However,
some possible challenges may include:

• Synchronization-free and Multipath Disambiguation. The synchronization between
transceivers guarantees the accuracy of AoA and TDoA-based methods, resulting in ad-
ditional energy consumption. Multipath disambiguation addresses the problem of signal
change in terms of the polarization mode, phase, and Doppler shift for better accuracy.
• Multi-target Sensing. Multi-target reflected signals will be inter-weaved, thus separating

these signals under a limited channel bandwidth is challenging. Besides, concurrent trans-
mission for multi-target localization deserves further exploration.
• Mobile Localization. Moving targets or gateways induce the complex multipath effect and

signal attenuation, which deserves further study.

6.3 Wireless Co-existence & Cross-technology Communication

The emerging paradigm of IoT has inspired the exploration of interoperability between LoRa and
other heterogeneous wireless technologies. These works can be divided into two categories: Wire-

less Co-Existence (WCE) and Cross-Technology Communication (CTC). Table 14 summa-
rizes the existing LoRa WCE and CTC methods.

Wireless Co-existence Methods. WCE methods mainly rely on interference avoidance,
detection, and cancellation to achieve the co-existence of different technologies. Recently, a new
LoRa chip called SX1280 was proposed by Semtech that provides a possibility of LoRa radio
operating at 2.4 GHz frequency, resulting in a larger available bandwidth (from 500 to 1,600 kHz)
and a faster data rate (from 21 to 70 kbps). In this context, LoRa packets may be severely damaged
by Wi-Fi interference, so Chen et al. [23] proposed a weak signal detection method termed LoFi
to achieve the co-existence of LoRa and Wi-Fi. Inspired by the physical phenomenon named
Stochastic Resonance (SR), LoFi adds appropriate white noise that is capable of enhancing weak
LoRa signals at specific frequencies. Specifically, LoFi first selectively transforms the frequency of
a LoRa chirp into one particular small frequency and separates Wi-Fi signal to another frequency
range to detect LoRa signals. Then, LoFi adopts a bandwidth-aware spectrum reservation method
to adaptively reserve the spectrum for LoRa collision-free transmission according to the spectrum
occupancy. Sun et al. [143] proposed a Partial Symbol Recovery (PSR) scheme to combat CT
interference, including Wi-Fi, ZigBee, and Bluetooth. In the coarse-grained localization stage,
PSR performs the maximum pooling and calculates the ratio between the dominant frequency
component and the average after Short Time Fourier Transform (STFT) operation. PSR
identifies and recovers LoRa symbols based on this ratio in the fine-grained detection one. Besides,
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several methods [51, 188] paid attention to the combination of NB-IoT and LoRa technology.
Zhang et al. [188] proposed an information monitoring system integrating NB-IoT and LoRa,
which mainly relies on the designed main-nodes equipped with both radio modules to receive
messages from LoRa sub-nodes and transmit them to the cloud server.

Cross-technology Communication Methods. CTC mainly refers to exchanging instructions
and data flow across two or more different technologies (i.e., the carrier and target ones), which
exploits both (or all) of their advantages. Shi et al. [139] proposed LoRaBee to support CTC from
LoRa to ZigBee unidirectional. In LoRaBee, the LoRa signal is adopted as the carrier with elabo-
rate frequency tuning and payload encoding, and Zigbee can decode the packet by sampling the
RSS value. Specifically, the main idea is to correlate (i.e., map) the data bytes in the LoRa payload
with the generated RSS signature between the LoRa transmitter and ZigBee receiver and make
both sides store this mapping. However, it is computation-inefficient and lacks scalability. Li et al.
[88] proposed Symphony to support the CTC from Bluetooth Low Energy (BLE) and ZigBee to
LoRa, along with a parallel decoding method. Specifically, BLE, ZigBee, and LoRa signals are mod-
ulated by Gaussian Frequency Shift Keying (GFSK), Offset Quadrature Phase Shift Keying

(OQPSK), and CSS to generate single-tone sinusoidal signals, respectively. The received samples
are split, multiplied with correlation templates, then disentangled and decoded via performing FFT
operation at the LoRa receiver side in turn. Shen et al. [137] proposed EMLoRa, which reshapes
EMG radiation into LoRa-like chirps through AM. Liu et al. [95] presented XFi based on signal
hitchhiking. Low-speed IoT (ZigBee, LoRa) data packets collide with (hitchhike) high-speed Wi-
Fi ones in the overlapped spectrum, which can then be decoded by commodity Wi-Fi receivers.
Specifically, XFi first reconstructs the IoT waveform with erased segments by analyzing the Wi-Fi
payload and then utilizes the enhanced IoT decoder to reliably decode the reconstructed waveform
through incorporating the signal erasure pattern with the IoT signal redundancy information.

Current emerging WCE and CTC methods adapt to the unprecedented proliferation of heteroge-
neous wireless devices and make up for the shortcomings of another single technology by exploit-
ing the advantages of the considerable communication range of LoRa. The existing WCE [23, 143]
and CTC [88, 137] methods mainly focus on interference avoidance and signal approximation to
the receiver waveform methodologies. Additionally, RSS mapping [139] and signal hitchhiking
[95] provide novel solutions. However, these methods still leave room for improvement in terms
of hardware design, network deployment, generality for other technologies, and security issues.

Apart from the aforementioned LoRa-enabled applications, several methods focus on others,
such as network aggregation [48, 183], C-RAN [39, 93]. For example, LoRa network aggregation
[48, 183], information retrieving on the basis of the selection and analysis of data in the network,
receives popularity recently. Yang et al. [183] proposed an accurate, general, future-proof, and
energy-efficient analytic framework for LPWAN termed Joltik. Joltik can calculate sensor data ag-
gregation, utilize universal sketching for transmission, and support unforeseen metrics without
additional energy overhead. Specifically, Joltik is built on universal sketching, which discreetly
provides a smaller number of counters at the lower level for efficient storage, employs a compres-
sion scheme for reducing the communication cost, and eliminates updates of redundant counters
for reducing the computational cost. Gadre et al. [48] proposed QuAiL, which enables coarse aggre-
gation queries of sensing data across LPWAN (LoRa, NB-IoT) clients within one packet timespan,
inducing spatial distribution, statistics, and machine learning types. QuAiL mainly relies on en-
coding the information in the energy of concurrent transmissions across clients and leverages this
linear addition of powers of phase-asynchronous channels for different types of queries. Besides,
QuAiL requires wireless impairment tackling (e.g., timing and frequency offsets, noise) for syn-
chronization and involves security and privacy considerations using random power weights of
clients.
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6.4 Other Applications

As LoRa networks possess the advantages of low power consumption and wide coverage, they
have been widely used in various real-world IoT applications, summarized below:

• Smart City. Smart building and lighting [118, 176], public assets tracking [35], surveillance
system [136], are deployed to better serve the city life.
• Smart Industry. Industry applications, such as smart grids [34], smart metering [161], and

distributed measurement system [130], also receive much popularity.
• Smart Agriculture. LoRa is widely used in agriculture area, such as soil health monitoring

[125], smart irrigation system [189], and precision agriculture [19].
• Smart Healthcare. Besides, LoRa is utilized for healthcare monitoring [21] and against

COVID-19 pandemic [126].

7 CHALLENGES AND FUTURE DIRECTIONS

In previous sections, we have reviewed extensive works developed for LoRa networks. Below, we
provide researchers with challenges of existing works and potential future research directions in
this domain.

7.1 Challenges

LoRa Analysis. Extensive analysis of LoRa performance can help understand the capabilities
and limitations of LoRa. Quantifying LoRa performance with the corresponding factors becomes
an early and crucial work for further study. LoRa analysis tools also leave room for further im-
provements. The existing analytical models are mostly derived under strict assumptions. The ma-
jor influencing factors need to be explicitly represented before combating various interference for
devising accurate and general analytical models. Simulators offer a convenient way for experiment
test and validation, but they are not full-featured enough. Developing large-scale public testbeds is
challenging concerning network deployment, numbers of LoRa devices, types of sensors, remote
development, and user experience.

LoRa Communication. The performance of LoRa communication primarily relies on its PHY
layer modulation and demodulation, MAC protocol, and configuration settings of nodes. The effec-
tiveness and efficiency are of primary concern for LoRa communication studies. In particular, the
transceiver modification, the compatibility with COTS devices, and additional energy consump-
tion issues make improvements on LoRa modulation challenging. For demodulation, the complex-
ity of the algorithm, synchronization requirement, and the impact of CFO, SFO, and inter-packet
interference still require further study. It is also challenging to devise adaptive and effective MAC
protocols, due to the inflexibility of contention-based and energy waste of schedule-based ones.
Besides, different network deployment, various intra- and inter-network interference, dynamic
link quality, and algorithm complexity are challenging for configuration settings methods.

LoRa Security. Security and privacy are vital with the surging growth of LoRa networks, on
the premise that LoRa is susceptible to various vulnerabilities. LoRa PHY properties have shed
light on novel and powerful attacks that are difficult to combat, while the high power efficiency
requirement also makes its countermeasures challenging. Additionally, although PHY layer se-
curity methods can maintain theoretically absolute security, non-robust characteristics limit the
practicality. For example, the existing key generation methods generally allow occurring only
two legitimate parties in a long-term probing period but not group ones. Discriminative instan-
taneous features and suitability for newly join-request legitimate devices are challenging for RFFI
methods.
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LoRa-enabled Applications. Beyond the scope of LoRa networks, plenty of works have at-
tempted various LoRa-enabled application designs inclusive of backscatter, sensing, heterogeneous
technologies, and so on. These works have made promising progress and shown great potential
in the research community, but also deserve further much-room exploration. For backscatter, am-
bient excitation signals, concurrent transmission capability, and demodulating weak backscatter
signals from the strong superposed excitation signal are valuable and challenging factors. The ma-
jor challenges of wireless sensing lie in effective feature extraction, robust signal model derivation,
and comprehensive data collection. The generality is a long-term challenge for integration with
heterogeneous wireless technologies.

7.2 Future Directions

LoRa Protocol Stack. As an emerging LPWAN technology, various efforts have been made
on the protocol stack of LoRa, especially its PHY/MAC layers. The unique characteristics of LoRa
PHY signals have been leveraged for collision disambiguation [167], sensing [186], and backscatter
[74], which undoubtedly demonstrates the capability and potential of LoRa PHY layer. For further
directions, novel modulation technology is a new way to break through the conventional theory
for transmission performance optimization. Apart from leveraging LoRa PHY packet structure and
chirp features in time and frequency domains, exploiting spatial [93] and reception [167] diversity
gain, adopting deep learning networks [86] can break through some inherent limitations of LoRa
conventional PHY decoding while ensuring the advantages of its weak and collision decoding
ability. Cross-layer, cross-device, and cross-sensor sensing can provide multi-domain knowledge
fusion for better sensing [99]. Integrated Sensing and Communication (ISAC), focusing on
joint-protocol design and time-frequency resource reuse, has been a hot research topic recently.
Additionally, as LoRa only defines the lower PHY layer in the communication stack, upper network
protocols can refine LoRa protocol stack with respect to MAC protocol, data/control plane, and so
on.

LoRa Network. In essence, LoRa is a communication technology to form wireless sensor net-
works featuring low energy consumption and long transmission distance. However, many network
performance indicators, such as throughput, communication range, energy consumption, capac-
ity, scalability, and security, deserve further consideration and enhancement. Apart from LoRa
networking protocols, the aforementioned ones can be improved via link coordination and adapt-
ability, network management, and so on. Link quality dramatically affects the extent of signal
propagation’s attenuation (e.g., fading, path loss). Hence, channel diversity, adaptive transmis-
sion strategies, and opportunistic spectrum access deserve further improvements. The real-life
deployed LoRa networks often present a large-scale complex architecture, which could be multi-
topology, multi-hop, or heterogeneous networks. Therefore, network management can achieve
resource allocation, load balance, device configuration, accounting, and security services. Among
these, network aggregation [48, 183] on LoRa networks is an emerging way for information retriev-
ing and accounting. Besides general security mechanisms, regular firmware updating via over-the-
air for remotely deployed LoRa devices sheds light on network security.

AI-empowered LoRa. Artificial Intelligence (AI) plays a significant role in a wide range of
research and industry fields [145]. The mainstream deep learning methods can learn implicit and
fine-grained feature representations from the sample instances, render high accuracy and accept-
able generalization, and avoid complex feature engineering. Data-driven deep learning methods
on LoRa signals have achieved remarkable results and incredible purposes in signal demodulating
[86], RFFI [138], and sensing [91]. Additionally, few-shot learning, un-/semi-supervised learning
[145], federal learning, and embedded AI can be applied to LoRa technology to achieve different
tasks. Thus, LoRa technology integration with AI is a worthy and broad future direction.
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8 CONCLUSION

LoRa is a crucial and promising LPWAN technology that gains significant research momentum
over the past decades, thus inspiring extensive works. In this article, we give a comprehensive
review of LoRa from four aspects, i.e., analysis, communication, security, and applications. Besides,
several challenges and potential research directions have also been discussed. Although we have
reviewed nearly 200 articles in this survey, the list of studies is far from exhaustive. Nevertheless,
it covers the majority of recent achievements and directions. We hope that this survey will make
it easier for researchers to identify research gaps and discover answers. Additionally, we would
like to welcome all researchers to contribute to this intriguing field by expanding it and providing
fresh insights.

REFERENCES

[1] Khaled Q. Abdelfadeel, Victor Cionca, and Dirk Pesch. 2018. Fair adaptive data rate allocation and power control in
LoRaWAN. In IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoW-

MoM). IEEE, 14–15.
[2] Khaled Q. Abdelfadeel, Dimitrios Zorbas, Victor Cionca, and Dirk Pesch. 2019. F REE–fine-grained scheduling for

reliable and energy-efficient data collection in LoRaWAN. IEEE Internet Things J. 7, 1 (2019), 669–683.
[3] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-Gibollet,

Frederic Saint-Marcel, Guillaume Schreiner, Julien Vandaele, et al. 2015. FIT IoT-LAB: A large scale open experimental
IoT testbed. In IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 459–464.

[4] Amani Al-Shawabka, Philip Pietraski, Sudhir B. Pattar, Francesco Restuccia, and Tommaso Melodia. 2021. DeepLoRa:
Fingerprinting LoRa devices at scale through deep learning and data augmentation. In 22nd International Symposium

on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing. 251–260.
[5] Licia Amichi, Megumi Kaneko, Ellen Hidemi Fukuda, Nancy El Rachkidy, and Alexandre Guitton. 2020. Joint alloca-

tion strategies of power and spreading factors with imperfect orthogonality in LoRa networks. IEEE Trans. Commun.

68, 6 (2020), 3750–3765.
[6] Emekcan Aras, Gowri Sankar Ramachandran, Piers Lawrence, and Danny Hughes. 2017. Exploring the security

vulnerabilities of LoRa. In 3rd IEEE International Conference on Cybernetics (CYBCONF). IEEE, 1–6.
[7] Emekcan Aras, Nicolas Small, Gowri Sankar Ramachandran, Stéphane Delbruel, Wouter Joosen, and Danny Hughes.

2017. Selective jamming of LoRaWAN using commodity hardware. In 14th EAI International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services. 363–372.
[8] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. 2016. A study of LoRa: Long range & low

power networks for the internet of things. Sensors 16, 9 (2016), 1466.
[9] Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. 2020. A cloud-optimized link layer for low-power

wide-area networks. In 18th International Conference on Mobile Systems, Applications, and Services. 247–259.
[10] Atul Bansal, Akshay Gadre, Vaibhav Singh, Anthony Rowe, Bob Iannucci, and Swarun Kumar. 2021. OwLL: Accurate

LoRa localization using the TV whitespaces. In 20th International Conference on Information Processing in Sensor

Networks (Co-located with CPS-IoT Week’21). 148–162.
[11] Luca Beltramelli, Aamir Mahmood, Patrik Österberg, Mikael Gidlund, Paolo Ferrari, and Emiliano Sisinni. 2021. En-

ergy efficiency of slotted LoRaWAN communication with out-of-band synchronization. IEEE Trans. Instrum. Measur.

70 (2021), 1–11.
[12] Giulio Maria Bianco, Romeo Giuliano, Gaetano Marrocco, Franco Mazzenga, and Abraham Mejia-Aguilar. 2020. LoRa

system for search and rescue: Path-loss models and procedures in mountain scenarios. IEEE Internet Things J. 8, 3
(2020), 1985–1999.

[13] Roberto Bomfin, Marwa Chafii, and Gerhard Fettweis. 2019. A novel modulation for IoT: PSK-LoRa. In IEEE 89th

Vehicular Technology Conference (VTC’19-Spring). IEEE, 1–5.
[14] Martin Bor and Utz Roedig. 2017. LoRa transmission parameter selection. In 13th International Conference on Dis-

tributed Computing in Sensor Systems (DCOSS). IEEE, 27–34.
[15] Martin C. Bor, Utz Roedig, Thiemo Voigt, and Juan M. Alonso. 2016. Do LoRa low-power wide-area networks scale?

In 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. 59–67.
[16] Taoufik Bouguera, Jean-François Diouris, Jean-Jacques Chaillout, Randa Jaouadi, and Guillaume Andrieux. 2018.

Energy consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors 18, 7 (2018), 2104.
[17] Ismail Butun, Nuno Pereira, and Mikael Gidlund. 2018. Analysis of LoRaWAN v1. 1 security. In 4th ACM MobiHoc

Workshop on Experiences with the Design and Implementation of Smart Objects. 1–6.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



Recent Advances in LoRa: A Comprehensive Survey 67:37

[18] Ismail Butun, Nuno Pereira, and Mikael Gidlund. 2019. Security risk analysis of LoRaWAN and future directions. Fut.

Internet 11, 1 (2019), 3.
[19] Antonio Caruso, Stefano Chessa, Soledad Escolar, Jesús Barba, and Juan Carlos López. 2021. Collection of data with

drones in precision agriculture: Analytical model and LoRa case study. IEEE Internet Things J. 8, 22 (2021), 16692–
16704.

[20] Lluís Casals, Bernat Mir, Rafael Vidal, and Carles Gomez. 2017. Modeling the energy performance of LoRaWAN.
Sensors 17, 10 (2017), 2364.

[21] Philip A. Catherwood, David Steele, Mike Little, Stephen McComb, and James McLaughlin. 2018. A community-based
IoT personalized wireless healthcare solution trial. IEEE J. Translat. Eng. Health Med. 6 (2018), 1–13.

[22] Marco Centenaro, Lorenzo Vangelista, Andrea Zanella, and Michele Zorzi. 2016. Long-range communications in
unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 23, 5 (2016), 60–67.

[23] Gonglong Chen, Wei Dong, and Jiamei Lv. 2021. LoFi: Enabling 2.4 GHz LoRa and WiFi coexistence by detecting
extremely weak signals. In IEEE Conference on Computer Communications. IEEE, 1–10.

[24] Lili Chen, Jie Xiong, Xiaojiang Chen, Sunghoon Ivan Lee, Kai Chen, Dianhe Han, Dingyi Fang, Zhanyong Tang,
and Zheng Wang. 2019. WideSee: Towards wide-area contactless wireless sensing. In 17th Conference on Embedded

Networked Sensor Systems. 258–270.
[25] Po-Yu Chen, Laksh Bhatia, Roman Kolcun, David Boyle, and Julie A. McCann. 2020. Contact-aware opportunistic

data forwarding in disconnected LoRaWAN mobile networks. In IEEE 40th International Conference on Distributed

Computing Systems (ICDCS). IEEE, 574–583.
[26] Qian Chen and Jiliang Wang. 2021. AlignTrack: Push the limit of LoRa collision decoding. In IEEE 29th International

Conference on Network Protocols (ICNP). IEEE, 1–11.
[27] Marco Chiani and Ahmed Elzanaty. 2019. On the LoRa modulation for IoT: Waveform properties and spectral analysis.

IEEE Internet Things J. 6, 5 (2019), 8463–8470.
[28] Kwon Nung Choi, Harini Kolamunna, Akila Uyanwatta, Kanchana Thilakarathna, Suranga Seneviratne, Ralph Holz,

Mahbub Hassan, and Albert Y. Zomaya. 2020. LoRadar: LoRa sensor network monitoring through passive packet
sniffing. ACM SIGCOMM Comput. Commun. Rev. 50, 4 (2020), 10–24.

[29] Jeferson Rodrigues Cotrim and João Henrique Kleinschmidt. 2020. LoRaWAN mesh networks: A review and classifi-
cation of multihop communication. Sensors 20, 15 (2020), 4273.

[30] Daniele Croce, Michele Gucciardo, Stefano Mangione, Giuseppe Santaromita, and Ilenia Tinnirello. 2018. Impact of
LoRa imperfect orthogonality: Analysis of link-level performance. IEEE Commun. Lett. 22, 4 (2018), 796–799.

[31] Francesca Cuomo, Manuel Campo, Alberto Caponi, Giuseppe Bianchi, Giampaolo Rossini, and Patrizio Pisani. 2017.
EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. In IEEE 13th International

Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 1–8.
[32] Jéssika C. da Silva, Daniel de L. Flor, Vicente Angelo de Sousa Junior, Níbia Souza Bezerra, and Alvaro A. M. de

Medeiros. 2021. A survey of LoRaWAN simulation tools in ns-3. J. Commun. Inf. Syst. 36, 1 (2021), 17–30.
[33] Syed Muhammad Danish, Arfa Nasir, Hassaan Khaliq Qureshi, Ayesha Binte Ashfaq, Shahid Mumtaz, and Jonathan

Rodriguez. 2018. Network intrusion detection system for jamming attack in LoRaWAN join procedure. In IEEE Inter-

national Conference on Communications (ICC). IEEE, 1–6.
[34] Mauricio de Castro Tomé, Pedro H. J. Nardelli, and Hirley Alves. 2018. Long-range low-power wireless networks

and sampling strategies in electricity metering. IEEE Trans. Industr. Electron. 66, 2 (2018), 1629–1637.
[35] Anthony S. Deese, Joe Jesson, Thomas Brennan, Steven Hollain, Patrick Stefanacci, Emily Driscoll, Connor Dick,

Keith Garcia, Ryan Mosher, Brian Rentsch, et al. 2020. Long-term monitoring of smart city assets via Internet of
Things and low-power wide-area networks. IEEE Internet Things J. 8, 1 (2020), 222–231.

[36] Carmen Delgado, José María Sanz, Chris Blondia, and Jeroen Famaey. 2020. Batteryless LoRaWAN communications
using energy harvesting: Modeling and characterization. IEEE Internet Things J. 8, 4 (2020), 2694–2711.

[37] Silvia Demetri, Marco Zúñiga, Gian Pietro Picco, Fernando Kuipers, Lorenzo Bruzzone, and Thomas Telkamp. 2019.
Automated estimation of link quality for LoRa: A remote sensing approach. In 18th ACM/IEEE International Confer-

ence on Information Processing in Sensor Networks (IPSN). IEEE, 145–156.
[38] Adwait Dongare, Craig Hesling, Khushboo Bhatia, Artur Balanuta, Ricardo Lopes Pereira, Bob Iannucci, and An-

thony Rowe. 2017. OpenChirp: A low-power wide-area networking architecture. In IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 569–574.
[39] Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Artur Balanuta, Swarun Kumar, Bob Iannucci, and

Anthony Rowe. 2018. Charm: Exploiting geographical diversity through coherent combining in low-power wide-
area networks. In 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE,
60–71.

[40] Rida El Chall, Samer Lahoud, and Melhem El Helou. 2019. LoRaWAN network: Radio propagation models and per-
formance evaluation in various environments in Lebanon. IEEE Internet Things J. 6, 2 (2019), 2366–2378.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



67:38 Z. Sun et al.

[41] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yağan. 2017. Empowering low-power wide area networks
in urban settings. In Conference of the ACM Special Interest Group on Data Communication. 309–321.

[42] Tallal Elshabrawy and Joerg Robert. 2019. Interleaved chirp spreading LoRa-based modulation. IEEE Internet Things

J. 6, 2 (2019), 3855–3863.
[43] Sezana Fahmida, Venkata P. Modekurthy, Mahbubur Rahman, Abusayeed Saifullah, and Marco Brocanelli. 2020.

Long-lived LoRa: Prolonging the lifetime of a LoRa network. In IEEE 28th International Conference on Network Proto-

cols (ICNP). IEEE, 1–12.
[44] Luca Feltrin, Chiara Buratti, Enrico Vinciarelli, Roberto De Bonis, and Roberto Verdone. 2018. LoRaWAN: Evaluation

of link-and system-level performance. IEEE Internet Things J. 5, 3 (2018), 2249–2258.
[45] Joseph Finnegan, Ronan Farrell, and Stephen Brown. 2020. Analysis and enhancement of the LoRaWAN adaptive

data rate scheme. IEEE Internet Things J. 7, 8 (2020), 7171–7180.
[46] Joseph Finnegan, Kyriaki Niotaki, and Stephen Brown. 2020. Exploring the boundaries of ambient RF energy har-

vesting with LoRaWAN. IEEE Internet Things J. 8, 7 (2020), 5736–5743.
[47] Akshay Gadre, Revathy Narayanan, Anh Luong, Anthony Rowe, Bob Iannucci, and Swarun Kumar. 2020. Frequency

configuration for low-power wide-area networks in a heartbeat. In 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 20). 339–352.
[48] Akshay Gadre, Fan Yi, Anthony Rowe, Bob Iannucci, and Swarun Kumar. 2020. Quick (and dirty) aggregate queries

on low-power WANs. In 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).
IEEE, 277–288.

[49] Amalinda Gamage, Jansen Christian Liando, Chaojie Gu, Rui Tan, and Mo Li. 2020. LMAC: Efficient carrier-sense
multiple access for LoRa. In 26th Annual International Conference on Mobile Computing and Networking. 1–13.

[50] Jiayao Gao, Weitao Xu, Salil Kanhere, Sanjay Jha, Jun Young Kim, Walter Huang, and Wen Hu. 2021. A novel model-
based security scheme for LoRa key generation. In 20th International Conference on Information Processing in Sensor

Networks (co-located with CPS-IoT Week’21). 47–61.
[51] Shang Gao, Xuehui Zhang, Cuicui Du, and Qian Ji. 2019. A multichannel low-power wide-area network with high-

accuracy synchronization ability for machine vibration monitoring. IEEE Internet Things J. 6, 3 (2019), 5040–5047.
[52] Weifeng Gao, Wan Du, Zhiwei Zhao, Geyong Min, and Mukesh Singhal. 2019. Towards energy-fairness in LoRa

networks. In IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 788–798.
[53] Weifeng Gao, Zhiwei Zhao, and Geyong Min. 2020. AdapLoRa: Resource adaptation for maximizing network lifetime

in LoRa networks. In IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 1–11.
[54] Yi Gao, Jiadong Zhang, Gaoyang Guan, and Wei Dong. 2020. LinkLab: A scalable and heterogeneous testbed for

remotely developing and experimenting IoT applications. In IEEE/ACM 5th International Conference on Internet-of-

Things Design and Implementation (IoTDI). IEEE, 176–188.
[55] Orestis Georgiou and Usman Raza. 2017. Low power wide area network analysis: Can LoRa scale? IEEE Wirel. Com-

mun. Lett. 6, 2 (2017), 162–165.
[56] Panagiotis Gkotsiopoulos, Dimitrios Zorbas, and Christos Douligeris. 2021. Performance determinants in LoRa net-

works: A literature review. IEEE Commun. Surv. Tutor. 23, 3 (2021), 1721–1758.
[57] Chaojie Gu, Linshan Jiang, Rui Tan, Mo Li, and Jun Huang. 2021. Attack-aware synchronization-free data timestamp-

ing in LoRaWAN. ACM Trans. Sensor Netw. 18, 1 (2021), 1–31.
[58] Chaojie Gu, Rui Tan, and Xin Lou. 2019. One-hop out-of-band control planes for multi-hop wireless sensor networks.

ACM Trans. Sensor Netw. 15, 4 (2019), 1–29.
[59] Xiuzhen Guo, Longfei Shangguan, Yuan He, Jia Zhang, Haotian Jiang, Awais Ahmad Siddiqi, and Yunhao Liu. 2020.

Aloba: Rethinking ON-OFF keying modulation for ambient LoRa backscatter. In 18th Conference on Embedded Net-

worked Sensor Systems. 192–204.
[60] Jialuo Han and Jidong Wang. 2018. An enhanced key management scheme for LoRaWAN. Cryptography 2, 4 (2018),

34.
[61] Muhammad Hanif and Ha H. Nguyen. 2020. Slope-shift keying LoRa-based modulation. IEEE Internet Things J. 8, 1

(2020), 211–221.
[62] Jetmir Haxhibeqiri, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. 2018. A survey of LoRaWAN for IoT: From

technology to application. Sensors 18, 11 (2018), 3995.
[63] Jetmir Haxhibeqiri, Ingrid Moerman, and Jeroen Hoebeke. 2018. Low overhead scheduling of LoRa transmissions for

improved scalability. IEEE Internet Things J. 6, 2 (2018), 3097–3109.
[64] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota. 2019. NetScatter: Enabling large-scale backscatter networks.

In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI’19). 271–284.
[65] Mehrdad Hessar, Ali Najafi, Vikram Iyer, and Shyamnath Gollakota. 2020. TinySDR: Low-power SDR platform for

over-the-air programmable IoT testbeds. In 17th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI’20). 1031–1046.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



Recent Advances in LoRa: A Comprehensive Survey 67:39

[66] Frank Hessel, Lars Almon, and Flor Álvarez. 2020. ChirpOTLE: A framework for practical LoRaWAN security eval-
uation. In 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks. 306–316.

[67] Lu Hou, Kan Zheng, Zhiming Liu, Xiaojun Xu, and Tao Wu. 2020. Design and prototype implementation of a
blockchain-enabled LoRa system with edge computing. IEEE Internet Things J. 8, 4 (2020), 2419–2430.

[68] Ningning Hou, Xianjin Xia, and Yuanqing Zheng. 2021. Jamming of LoRa PHY and countermeasure. In IEEE Confer-

ence on Computer Communications. IEEE, 1–10.
[69] Ningning Hou and Yuanqing Zheng. 2020. CloakLoRa: A covert channel over LoRa phy. In IEEE 28th International

Conference on Network Protocols (ICNP). IEEE, 1–11.
[70] Anzhong Hu, Tiejun Lv, Hui Gao, Zhang Zhang, and Shaoshi Yang. 2014. An ESPRIT-based approach for 2-D local-

ization of incoherently distributed sources in massive MIMO systems. IEEE J. Select. Topics Sig. Process. 8, 5 (2014),
996–1011.

[71] Bin Hu, Zhimeng Yin, Shuai Wang, Zhuqing Xu, and Tian He. 2020. SCLoRa: Leveraging multi-dimensionality in
decoding collided LoRa transmissions. In IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 1–11.

[72] Soukaina Ihirri, Essaid Sabir, Ahmed Errami, and Mohamed Khaldoun. 2019. A scalable slotted aloha for massive IoT:
A throughput analysis. In 15th International Wireless Communications & Mobile Computing Conference (IWCMC).
IEEE, 508–513.

[73] Haotian Jiang, Jiacheng Zhang, Xiuzhen Guo, and Yuan He. 2021. Sense me on the ride: Accurate mobile sensing
over a LoRa backscatter channel. In 19th ACM Conference on Embedded Networked Sensor Systems. 125–137.

[74] Jinyan Jiang, Zhenqiang Xu, Fan Dang, and Jiliang Wang. 2021. Long-range ambient LoRa backscatter with parallel
decoding. In 27th Annual International Conference on Mobile Computing and Networking. 684–696.

[75] Yu Jiang, Linning Peng, Aiqun Hu, Sheng Wang, Yi Huang, and Lu Zhang. 2019. Physical layer identification of LoRa
devices using constellation trace figure. EURASIP J. Wirel. Commun. Netw. 2019, 1 (2019), 1–11.

[76] Aisha Kanwal Junejo, Fatma Benkhelifa, Boon Wong, and Julie A. McCann. 2021. LoRa-LiSK: A lightweight shared
secret key generation scheme for LoRa networks. IEEE Internet Things J. 9, 6 (2021), 4110–4124.

[77] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla. 2021. Simplifying backscatter deployment: Full-duplex
LoRa backscatter. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI’21). 955–972.

[78] Jaehyu Kim and JooSeok Song. 2017. A dual key-based activation scheme for secure LoRaWAN. Wirel. Commun. Mob.

Comput. 2017 (2017). DOI:10.1109/COMST.2021.3090409
[79] Jaehyu Kim and JooSeok Song. 2017. A simple and efficient replay attack prevention scheme for LoRaWAN. In 7th

International Conference on Communication and Network Security. 32–36.
[80] Nikolaos Kouvelas, Vijay S. Rao, R. Venkatesha Prasad, Gauri Tawde, and Koen Langendoen. 2020. p-CARMA: Po-

litely scaling LoRaWAN. In International Conference on Embedded Wireless Systems and Networks. 25–36.
[81] Rachel Kufakunesu, Gerhard P. Hancke, and Adnan M. Abu-Mahfouz. 2020. A survey on adaptive data rate optimiza-

tion in LoRaWAN: Recent solutions and major challenges. Sensors 20, 18 (2020), 5044.
[82] Ka-Ho Lam, Chi-Chung Cheung, and Wah-Ching Lee. 2019. RSSI-based LoRa localization systems for large-scale

indoor and outdoor environments. IEEE Trans. Vehic. Technol. 68, 12 (2019), 11778–11791.
[83] Huang-Chen Lee and Kai-Hsiang Ke. 2018. Monitoring of large-area IoT sensors using a LoRa wireless mesh network

system: Design and evaluation. IEEE Trans. Instrum. Measur. 67, 9 (2018), 2177–2187.
[84] Luca Leonardi, Filippo Battaglia, and Lucia Lo Bello. 2019. RT-LoRa: A medium access strategy to support real-time

flows over LoRa-based networks for industrial IoT applications. IEEE Internet Things J. 6, 6 (2019), 10812–10823.
[85] Chenning Li and Zhichao Cao. 2022. LoRa networking techniques for large-scale and long-term IoT: A down-to-top

survey. ACM Comput. Surv. 55, 3 (2022), 1–36.
[86] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, and

Yunhao Liu. 2021. NELoRa: Towards ultra-low SNR LoRa communication with neural-enhanced demodulation. In
ACM Conference on Embedded Networked Sensor Systems (SenSys’21).

[87] Yinghui Li, Jing Yang, and Jiliang Wang. 2020. DyLoRa: Towards energy efficient dynamic LoRa transmission control.
In IEEE Conference on Computer Communications. IEEE, 2312–2320.

[88] Zhijun Li and Yongrui Chen. 2019. Achieving universal low-power wide-area networks on existing wireless devices.
In IEEE 27th International Conference on Network Protocols (ICNP). IEEE, 1–11.

[89] Jansen C. Liando, Amalinda Gamage, Agustinus W. Tengourtius, and Mo Li. 2019. Known and unknown facts of
LoRa: Experiences from a large-scale measurement study. ACM Trans. Sensor Netw. 15, 2 (2019), 1–35.

[90] Jun Lin, Zhiqi Shen, and Chunyan Miao. 2017. Using blockchain technology to build trust in sharing LoRaWAN IoT.
In 2nd International Conference on Crowd Science and Engineering. 38–43.

[91] Yuxiang Lin, Wei Dong, Yi Gao, and Tao Gu. 2021. SateLoc: A virtual fingerprinting approach to outdoor LoRa
localization using satellite images. ACM Trans. Sensor Netw. 17, 4 (2021), 1–28.

[92] Jun Liu, Jiayao Gao, Sanjay Jha, and Wen Hu. 2021. Seirios: Leveraging multiple channels for LoRaWAN indoor and
outdoor localization. In 27th Annual International Conference on Mobile Computing and Networking. 656–669.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.

https://doi.org/10.1109/COMST.2021.3090409


67:40 Z. Sun et al.

[93] Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. 2020. Nephalai: Towards LPWAN C-RAN with physical layer compres-
sion. In 26th Annual International Conference on Mobile Computing and Networking. 1–12.

[94] Li Liu, Yuguang Yao, Zhichao Cao, and Mi Zhang. 2021. DeepLoRa: Learning accurate path loss model for long
distance links in LPWAN. In Proceedings of IEEE Conference on Computer Communications.

[95] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He. 2020. XFi: Cross-technology IoT data collection via com-
modity WiFi. In IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 1–11.

[96] Xiaolan Liu, Zhijin Qin, Yue Gao, and Julie A. McCann. 2019. Resource allocation in wireless powered IoT networks.
IEEE Internet Things J. 6, 3 (2019), 4935–4945.

[97] Qasim Lone, Etienne Dublé, Franck Rousseau, Ingrid Moerman, Spilios Giannoulis, and Andrzej Duda. 2018. WiSH-
WalT: A framework for controllable and reproducible LoRa testbeds. In IEEE 29th Annual International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 1–7.
[98] Ali Loubany, Samer Lahoud, and Rida El Chall. 2020. Adaptive algorithm for spreading factor selection in LoRaWAN

networks with multiple gateways. Comput. Netw. 182 (2020), 107491.
[99] Yongsen Ma, Gang Zhou, and Shuangquan Wang. 2019. WiFi sensing with channel state information: A survey. ACM

Comput. Surv. 52, 3 (2019), 1–36.
[100] Michele Magno, Faycal Ait Aoudia, Matthieu Gautier, Olivier Berder, and Luca Benini. 2017. WULoRa: An energy

efficient IoT end-node for energy harvesting and heterogeneous communication. In Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 1528–1533.
[101] Davide Magrin, Marco Centenaro, and Lorenzo Vangelista. 2017. Performance evaluation of LoRa networks in a

smart city scenario. In IEEE International Conference on Communications (ICC). IEEE, 1–7.
[102] Aamir Mahmood, Emiliano Sisinni, Lakshmikanth Guntupalli, Raúl Rondón, Syed Ali Hassan, and Mikael Gidlund.

2018. Scalability analysis of a LoRa network under imperfect orthogonality. IEEE Trans. Industr. Inform. 15, 3 (2018),
1425–1436.

[103] Jaco M. Marais, Reza Malekian, and Adnan M. Abu-Mahfouz. 2017. LoRa and LoRaWAN testbeds: A review. In IEEE

Africon. IEEE, 1496–1501.
[104] Paul Marcelis, Nikolaos Kouvelas, Vijay S. Rao, and Venkatesha Prasad. 2020. DaRe: Data recovery through applica-

tion layer coding for LoRaWAN. IEEE Trans. Mob. Comput. 21, 3 (2020), 895–910.
[105] Riccardo Marini, Walter Cerroni, and Chiara Buratti. 2020. A novel collision-aware adaptive data rate algorithm for

LoRaWAN networks. IEEE Internet Things J. 8, 4 (2020), 2670–2680.
[106] Riccardo Marini, Konstantin Mikhaylov, Gianni Pasolini, and Chiara Buratti. 2021. LoRaWANSim: A flexible simula-

tor for LoRaWAN networks. Sensors 21, 3 (2021), 695.
[107] Arturas Medeisis and Algimantas Kajackas. 2000. On the use of the universal Okumura-Hata propagation prediction

model in rural areas. In IEEE 51st Vehicular Technology Conference Proceedings. IEEE, 1815–1818.
[108] Konstantin Mikhaylov, Juha Petaejaejaervi, and Tuomo Haenninen. 2016. Analysis of capacity and scalability of the

LoRa low power wide area network technology. In 22nd European Wireless Conference. VDE, 1–6.
[109] Di Mu, Yitian Chen, Junyang Shi, and Mo Sha. 2020. Runtime control of LoRa spreading factor for campus shuttle

monitoring. In IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 1–11.
[110] SeungJae Na, DongYeop Hwang, WoonSeob Shin, and Ki-Hyung Kim. 2017. Scenario and countermeasure for replay

attack using join request messages in LoRaWAN. In International Conference on Information Networking (ICOIN).
IEEE, 718–720.

[111] Rajalakshmi Nandakumar, Vikram Iyer, and Shyamnath Gollakota. 2018. 3D localization for sub-centimeter sized
devices. In 16th ACM Conference on Embedded Networked Sensor Systems. 108–119.

[112] Tung T. Nguyen, Ha H. Nguyen, Robert Barton, and Patrick Grossetete. 2019. Efficient design of chirp spread spec-
trum modulation for low-power wide-area networks. IEEE Internet Things J. 6, 6 (2019), 9503–9515.

[113] Sina Rafati Niya, Sanjiv S. Jha, Thomas Bocek, and Burkhard Stiller. 2018. Design and implementation of an auto-
mated and decentralized pollution monitoring system with blockchains, smart contracts, and LoRaWAN. In IEEE/IFIP

Network Operations and Management Symposium. IEEE, 1–4.
[114] Hassan Noura, Tarif Hatoum, Ola Salman, Jean-Paul Yaacoub, and Ali Chehab. 2020. LoRaWAN security survey:

Issues, threats and possible mitigation techniques. Internet Things 12 (2020), 100303.
[115] Moises Nunez Ochoa, Arturo Guizar, Mickael Maman, and Andrzej Duda. 2017. Evaluating LoRa energy efficiency

for adaptive networks: From star to mesh topologies. In IEEE 13th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob). IEEE, 1–8.
[116] Jorge Ortín, Matteo Cesana, and Alessandro Redondi. 2019. Augmenting LoRaWAN performance with listen before

talk. IEEE Trans. Wirel. Commun. 18, 6 (2019), 3113–3128.
[117] Junhyun Park, Kunho Park, Hyeongho Bae, and Chong-Kwon Kim. 2020. EARN: Enhanced ADR with coding rate

adaptation in LoRaWAN. IEEE Internet Things J. 7, 12 (2020), 11873–11883.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



Recent Advances in LoRa: A Comprehensive Survey 67:41

[118] Gianni Pasolini, Chiara Buratti, Luca Feltrin, Flavio Zabini, Cristina De Castro, Roberto Verdone, and Oreste An-
drisano. 2018. Smart city pilot projects using LoRa and IEEE802. 15.4 technologies. Sensors 18, 4 (2018), 1118.

[119] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xianshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle Jamieson.
2018. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Conference of the ACM Special

Interest Group on Data Communication. 147–160.
[120] Juha Petäjäjärvi, Konstantin Mikhaylov, Marko Pettissalo, Janne Janhunen, and Jari Iinatti. 2017. Performance of

a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J.

Distrib. Sensor Netw. 13, 3 (2017), 1550147717699412.
[121] Rajeev Piyare, Amy L. Murphy, Michele Magno, and Luca Benini. 2018. On-demand LoRa: Asynchronous TDMA for

energy efficient and low latency communication in IoT. Sensors 18, 11 (2018), 3718.
[122] Tommaso Polonelli, Davide Brunelli, Achille Marzocchi, and Luca Benini. 2019. Slotted ALOHA on LoRaWAN-design,

analysis, and deployment. Sensors 19, 4 (2019), 838.
[123] Mina Rady, Maryam Hafeez, and Syed Ali Raza Zaidi. 2019. Computational methods for network-aware and network-

agnostic IoT low power wide area networks (LPWANs). IEEE Internet Things J. 6, 3 (2019), 5732–5744.
[124] Ceferino Gabriel Ramirez, Anton Sergeyev, Assya Dyussenova, and Bob Iannucci. 2019. LongShoT: Long-range syn-

chronization of time. In 18th International Conference on Information Processing in Sensor Networks. 289–300.
[125] S. R. Jino Ramson, Walter D. León-Salas, Zachary Brecheisen, Erika J. Foster, Cliff T. Johnston, Darrell G. Schulze,

Timothy Filley, Rahim Rahimi, Martín Juan Carlos Villalta Soto, Juan A. Lopa Bolivar, et al. 2021. A self-powered,
real-time, LoRaWAN IoT-based soil health monitoring system. IEEE Internet Things J. 8, 11 (2021), 9278–9293.

[126] Arvind Singh Rawat, Jagadheswaran Rajendran, Harikrishnan Ramiah, and Arti Rana. 2020. LORA (long range)
and LORAWAN technology for IoT applications in Covid-19 pandemic. In International Conference on Advances in

Computing, Communication & Materials (ICACCM). IEEE, 419–422.
[127] Brecht Reynders, Wannes Meert, and Sofie Pollin. 2017. Power and spreading factor control in low power wide area

networks. In IEEE International Conference on Communications (ICC). IEEE, 1–6.
[128] Brecht Reynders and Sofie Pollin. 2016. Chirp spread spectrum as a modulation technique for long range communi-

cation. In Symposium on Communications and Vehicular Technologies (SCVT). IEEE, 1–5.
[129] Brecht Reynders, Qing Wang, Pere Tuset-Peiro, Xavier Vilajosana, and Sofie Pollin. 2018. Improving reliability and

scalability of LoRaWANs through lightweight scheduling. IEEE Internet Things J. 5, 3 (2018), 1830–1842.
[130] Mattia Rizzi, Paolo Ferrari, Alessandra Flammini, and Emiliano Sisinni. 2017. Evaluation of the IoT LoRaWAN solu-

tion for distributed measurement applications. IEEE Trans. Instrum. Measur. 66, 12 (2017), 3340–3349.
[131] Mattia Rizzi, Paolo Ferrari, Alessandra Flammini, Emiliano Sisinni, and Mikael Gidlund. 2017. Using LoRa for in-

dustrial wireless networks. In IEEE 13th International Workshop on Factory Communication Systems (WFCS). IEEE,
1–4.

[132] Pieter Robyns, Eduard Marin, Wim Lamotte, Peter Quax, Dave Singelée, and Bart Preneel. 2017. Physical-layer fin-
gerprinting of LoRa devices using supervised and zero-shot learning. In 10th ACM Conference on Security and Privacy

in Wireless and Mobile Networks. 58–63.
[133] Henri Ruotsalainen, Junqing Zhang, and Stepan Grebeniuk. 2019. Experimental investigation on wireless key gener-

ation for low-power wide-area networks. IEEE Internet Things J. 7, 3 (2019), 1745–1755.
[134] Eryk Schiller, Silas Weber, and Burkhard Stiller. 2020. Design and evaluation of an SDR-based LoRa cloud radio

access network. In 16th International Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob). IEEE, 1–7.
[135] Muhammad Osama Shahid, Millan Philipose, Krishna Chintalapudi, Suman Banerjee, and Bhuvana Krishnaswamy.

2021. Concurrent interference cancellation: Decoding multi-packet collisions in LoRa. In ACM SIGCOMM Conference.
503–515.

[136] Vishal Sharma, Ilsun You, Giovanni Pau, Mario Collotta, Jae Deok Lim, and Jeong Nyeo Kim. 2018. LoRaWAN-based
energy-efficient surveillance by drones for intelligent transportation systems. Energies 11, 3 (2018), 573.

[137] Cheng Shen, Tian Liu, Jun Huang, and Rui Tan. 2021. When LoRa meets EMR: Electromagnetic covert channels can
be super resilient. In IEEE Symposium on Security and Privacy (SP). IEEE, 1304–1317.

[138] Guanxiong Shen, Junqing Zhang, Alan Marshall, Linning Peng, and Xianbin Wang. 2021. Radio frequency fingerprint
identification for LoRa using spectrogram and CNN. In IEEE Conference on Computer Communications. IEEE, 1–10.

[139] Junyang Shi, Di Mu, and Mo Sha. 2021. Enabling cross-technology communication from LoRa to ZigBee via payload
encoding in sub-1 GHz bands. ACM Trans. Sensor Netw. 18, 1 (2021), 1–26.

[140] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. 2018. Adaptive configuration of LoRa networks for
dense IoT deployments. In IEEE/IFIP Network Operations and Management Symposium. IEEE, 1–9.

[141] Guochao Song, Hang Yang, Wei Wang, and Tao Jiang. 2020. Reliable wide-area backscatter via channel polarization.
In IEEE Conference on Computer Communications. IEEE, 1300–1308.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



67:42 Z. Sun et al.

[142] Binbin Su, Zhijin Qin, and Qiang Ni. 2020. Energy efficient uplink transmissions in LoRa networks. IEEE Trans.

Commun. 68, 8 (2020), 4960–4972.
[143] Kai Sun, Zhimeng Yin, Weiwei Chen, Shuai Wang, Zeyu Zhang, and Tian He. 2021. Partial symbol recovery for

interference resilience in low-power wide area networks. In IEEE 29th International Conference on Network Protocols

(ICNP). IEEE, 1–11.
[144] Yuyi Sun, Jiming Chen, Shibo He, and Zhiguo Shi. 2020. High-confidence gateway planning and performance eval-

uation of a hybrid LoRa network. IEEE Internet Things J. 8, 2 (2020), 1071–1081.
[145] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu. 2020. Human action

recognition from various data modalities: A review. arXiv preprint arXiv:2012.11866 (2020).
[146] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. 2019. A survey on LoRa networking: Research

problems, current solutions, and open issues. IEEE Commun. Surv. Tutor. 22, 1 (2019), 371–388.
[147] Woo-Jin Sung, Hyeong-Geun Ahn, Jong-Beom Kim, and Seong-Gon Choi. 2018. Protecting end-device from re-

play attack on LoRaWAN. In 20th International Conference on Advanced Communication Technology (ICACT). IEEE,
167–171.

[148] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Najafi, Joshua R. Smith, and Shyamnath Gollakota. 2017. LoRa
backscatter: Enabling the vision of ubiquitous connectivity. Proc. ACM Interact., Mob., Wear. Ubiq. Technol. 1, 3 (2017),
1–24.

[149] Yas Hosseini Tehrani, Arash Amini, and Seyed Mojtaba Atarodi. 2020. A tree-structured LoRa network for energy
efficiency. IEEE Internet Things J. 8, 7 (2020), 6002–6011.

[150] Mohamed Amine Ben Temim, Guillaume Ferré, Baptiste Laporte-Fauret, Dominique Dallet, Bryce Minger, and Loïc
Fuché. 2020. An enhanced receiver to decode superposed LoRa-like signals. IEEE Internet Things J. 7, 8 (2020), 7419–
7431.

[151] Pei Tian, Xiaoyuan Ma, Carlo Alberto Boano, Ye Liu, Fengxu Yang, Xin Tian, Dan Li, and Jianming Wei. 2021. Chirp-
Box: An infrastructure-less LoRa testbed. In International Conference on Embedded Wireless Systems and Networks.
115–126.

[152] Pei Tian, Fengxu Yang, Xiaoyuan Ma, Carlo Alberto Boano, Xin Tian, Ye Liu, and Jianming Wei. 2021. Environmental
impact on the long-term connectivity and link quality of an outdoor LoRa network. In 19th ACM Conference on

Embedded Networked Sensor Systems. 565–568.
[153] Stefano Tomasin, Simone Zulian, and Lorenzo Vangelista. 2017. Security analysis of LoRaWAN join procedure for

internet of things networks. In IEEE Wireless Communications and Networking Conference Workshops (WCNCW).
IEEE, 1–6.

[154] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang. 2021. Combating link dynamics for reliable LoRa connection
in urban settings. In 27th Annual International Conference on Mobile Computing and Networking. 642–655.

[155] Shuai Tong, Jiliang Wang, and Yunhao Liu. 2020. Combating packet collisions using non-stationary signal scaling in
LPWANs. In 18th International Conference on Mobile Systems, Applications, and Services. 234–246.

[156] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. 2020. CoLoRa: Enabling multi-packet reception in LoRa. In IEEE

INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2303–2311.
[157] Verónica Toro-Betancur, Gopika Premsankar, Mariusz Slabicki, and Mario Di Francesco. 2021. Modeling communi-

cation reliability in LoRa networks with device-level accuracy. In IEEE INFOCOM 2021-IEEE Conference on Computer

Communications. IEEE, 1–10.
[158] Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan Beutel, and Lothar Thiele. 2020.

FlockLab 2: Multi-modal testing and validation for wireless IoT. In 3rd Workshop on Benchmarking Cyber-Physical

Systems and Internet of Things (CPS-IoTBench’2020). ETH Zurich, Computer Engineering and Networks Laboratory
(TIK).

[159] Floris Van den Abeele, Jetmir Haxhibeqiri, Ingrid Moerman, and Jeroen Hoebeke. 2017. Scalability analysis of large-
scale LoRaWAN networks in ns-3. IEEE Internet Things J. 4, 6 (2017), 2186–2198.

[160] Ambuj Varshney, Oliver Harms, Carlos Pérez-Penichet, Christian Rohner, Frederik Hermans, and Thiemo Voigt. 2017.
Lorea: A backscatter architecture that achieves a long communication range. In 15th ACM Conference on Embedded

Network Sensor Systems. 1–14.
[161] Nadège Varsier and Jean Schwoerer. 2017. Capacity limits of LoRaWAN technology for smart metering applications.

In 2017 IEEE International Conference on Communications (ICC). IEEE, 1–6.
[162] Xiong Wang, Linghe Kong, Liang He, and Guihai Chen. 2019. MLoRa: A multi-packet reception protocol in LoRa

networks. In 2019 IEEE 27th International Conference on Network Protocols (ICNP). IEEE, 1–11.
[163] Xiong Wang, Linghe Kong, Zucheng Wu, Long Cheng, Chenren Xu, and Guihai Chen. 2020. SLoRa: Towards secure

LoRa communications with fine-grained physical layer features. In 18th Conference on Embedded Networked Sensor

Systems. 258–270.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



Recent Advances in LoRa: A Comprehensive Survey 67:43

[164] Yuting Wang, Xiaolong Zheng, Liang Liu, and Huadong Ma. 2021. PolarTracker: Attitude-aware channel access for
floating low power wide area networks. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE,
1–10.

[165] Zhe Wang, Linghe Kong, Kangjie Xu, Liang He, Kaishun Wu, and Guihai Chen. 2020. Online concurrent transmis-
sions at LoRa gateway. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2331–2340.

[166] Antoine Waret, Megumi Kaneko, Alexandre Guitton, and Nancy El Rachkidy. 2018. LoRa throughput analysis with
imperfect spreading factor orthogonality. IEEE Wirel. Commun. Lett. 8, 2 (2018), 408–411.

[167] Xianjin Xia, Ningning Hou, Yuanqing Zheng, and Tao Gu. 2021. PCube: Scaling LoRa concurrent transmissions with
reception diversities. In 27th Annual International Conference on Mobile Computing and Networking. 670–683.

[168] Xianjin Xia, Yuanqing Zheng, and Tao Gu. 2020. FTrack: Parallel decoding for LoRa transmissions. IEEE/ACM Trans-

actions on Networking 28, 6 (2020), 2573–2586.
[169] Xianjin Xia, Yuanqing Zheng, and Tao Gu. 2021. LiteNap: Downclocking LoRa reception. IEEE/ACM Transactions on

Networking (2021).
[170] Binbin Xie and Jie Xiong. 2020. Combating interference for long range LoRa sensing. In 18th Conference on Embedded

Networked Sensor Systems. 69–81.
[171] Binbin Xie, Yuqing Yin, and Jie Xiong. 2021. Pushing the limits of long range wireless sensing with LoRa. 5, 3 (2021),

1–21.
[172] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. 2015. Tonetrack: Leveraging frequency-agile radios for time-

based indoor wireless localization. In 21st Annual International Conference on Mobile Computing and Networking.
537–549.

[173] Ting Xu and Ming Zhao. 2020. A LoRaWAN-MAC protocol based on WSN residual energy to adjust duty cycle. In
2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). IEEE, 1415–1420.

[174] Weitao Xu, Sanjay Jha, and Wen Hu. 2018. Exploring the feasibility of physical layer key generation for LoRaWAN.
In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th

IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 231–236.
[175] Weitao Xu, Sanjay Jha, and Wen Hu. 2018. LoRa-Key: Secure key generation system for LoRa-based network. IEEE

Internet Things J. 6, 4 (2018), 6404–6416.
[176] Weitao Xu, Jun Young Kim, Walter Huang, Salil Kanhere, Sanjay Jha, and Wen Hu. 2020. EMIoT: A LoRa-enabled

smart building solution based on emergency lights. In 7th ACM International Conference on Systems for Energy-

Efficient Buildings, Cities, and Transportation. 330–331.
[177] Weitao Xu, Jun Young Kim, Walter Huang, Salil S. Kanhere, Sanjay K. Jha, and Wen Hu. 2019. Measurement, charac-

terization, and modeling of LoRa technology in multifloor buildings. IEEE Internet Things J. 7, 1 (2019), 298–310.
[178] Weitao Xu, Junqing Zhang, Shunqi Huang, Chengwen Luo, and Wei Li. 2021. Key generation for Internet of Things:

A contemporary survey. ACM Comput. Surv. 54, 1 (2021), 1–37.
[179] Zhuqing Xu, Junzhou Luo, Zhimeng Yin, Tian He, and Fang Dong. 2020. S-MAC: Achieving high scalability

via adaptive scheduling in LPWAN. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
506–515.

[180] Zhenqiang Xu, Shuai Tong, Pengjin Xie, and Jiliang Wang. 2020. FlipLoRa: Resolving collisions with up-down
quasi-orthogonality. In 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking

(SECON). IEEE, 1–9.
[181] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. 2021. Pyramid: Real-time LoRa collision decoding with peak tracking.

In IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE, 1–9.
[182] Huanqi Yang, Hongbo Liu, Chengwen Luo, Yuezhong Wu, Wei Li, Albert Y. Zomaya, Linqi Song, and Weitao Xu.

2022. Vehicle-key: A secret key establishment scheme for LoRa-enabled IoV communications. In 2022 IEEE 42th

International Conference on Distributed Computing Systems (ICDCS). IEEE.
[183] Mingran Yang, Junbo Zhang, Akshay Gadre, Zaoxing Liu, Swarun Kumar, and Vyas Sekar. 2020. Joltik: Enabling

energy-efficient “future-proof” analytics on low-power wide-area networks. In 26th Annual International Conference

on Mobile Computing and Networking. 1–14.
[184] Xueying Yang, Evgenios Karampatzakis, Christian Doerr, and Fernando Kuipers. 2018. Security vulnerabilities in

LoRaWAN. In 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 129–140.

[185] Fusang Zhang, Zhaoxin Chang, Kai Niu, Jie Xiong, Beihong Jin, Qin Lv, and Daqing Zhang. 2020. Exploring LoRa
for long-range through-wall sensing. Proc. ACM Interact., Mob., Wear. Ubiq. Technol. 4, 2 (2020), 1–27.

[186] Fusang Zhang, Zhaoxin Chang, Jie Xiong, Rong Zheng, Junqi Ma, Kai Niu, Beihong Jin, and Daqing Zhang. 2021.
Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proc. ACM Interact.,

Mob., Wear. Ubiq. Technol. 5, 2 (2021), 1–25.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.



67:44 Z. Sun et al.

[187] Junqing Zhang, Alan Marshall, and Lajos Hanzo. 2018. Channel-envelope differencing eliminates secret key cor-
relation: LoRa-based key generation in low power wide area networks. IEEE Trans. Vehic. Technol. 67, 12 (2018),
12462–12466.

[188] Xihai Zhang, Mingming Zhang, Fanfeng Meng, Yue Qiao, Suijia Xu, and Senghout Hour. 2018. A low-power wide-
area network information monitoring system by combining NB-IoT and LoRa. IEEE Internet Things J. 6, 1 (2018),
590–598.

[189] Wenju Zhao, Shengwei Lin, Jiwen Han, Rongtao Xu, and Lu Hou. 2017. Design and implementation of smart irriga-
tion system based on LoRa. In 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 1–6.

[190] Dimitrios Zorbas, Khaled Abdelfadeel, Panayiotis Kotzanikolaou, and Dirk Pesch. 2020. TS-LoRa: Time-slotted
LoRaWAN for the industrial Internet of Things. Computer Communications 153 (2020), 1–10.

Received 24 February 2022; revised 17 May 2022; accepted 5 June 2022

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 67. Publication date: November 2022.


