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Abstract—Physical-layer key generation is promising in estab-
lishing a pair of cryptographic keys for emerging LoRa networks.
However, existing key generation systems may perform poorly
since the channel reciprocity is critically impaired due to low data
rate and long range in LoRa networks. To bridge this gap, this
paper proposes a novel key generation system for LoRa networks,
named ChirpKey. We reveal that the underlying limitations are
coarse-grained channel measurement and inefficient quantization
process. To enable fine-grained channel information, we propose a
novel LoRa-specific channel measurement method that essentially
analyzes the chirp-level changes in LoRa packets. Additionally,
we propose a LoRa channel state estimation algorithm to
eliminate the effect of asynchronous channel sampling. Instead
of using quantization process, we propose a novel perturbed
compressed sensing based key delivery method to achieve a
high level of robustness and security. Evaluation in different
real-world environments shows that ChirpKey improves the key
matching rate by 11.03–26.58% and key generation rate by
27–49× compared with the state-of-the-arts. Security analysis
demonstrates that ChirpKey is secure against several common
attacks. Moreover, we implement a ChirpKey prototype and
demonstrate that it can be executed in 0.2 s.

Index Terms—Physical-layer key generation, LoRa, Com-
pressed sensing

I. INTRODUCTION

A. Background and Limitations

LoRa is one of the Low-Power Wide Area Network (LP-
WAN) technologies and it has received increasingly attention
in recent years due to its open protocol standard and Chirp
Spread Spectrum (CSS) modulation. Similar to legacy wire-
less technologies such as Wi-Fi and ZigBee, LoRa networks
are vulnerable to malicious attacks due to the broadcasting
nature of wireless communication. To secure communication,
physical-layer key generation has emerged as a promising
solution, which complements conventional security schemes
(i.e., public key cryptography [1], pre-shared key [2]) due to its
high efficiency and no prior requirements. Although secret key
generation has been extensively studied over the past decades,
existing studies mainly focus on ZigBee [3], Wi-Fi [4]–[6],
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and 5G [7]. Physical-layer key generation in LoRa networks
poses new challenges due to its low data rate and long range.

To address these new challenges, a number of efforts
have been made recently. The received signal strength indi-
cator (RSSI) (i.e., channel characteristic) based method with
quantization [8] has been proposed to present the feasibility
of physical-layer key generation in LoRa networks, but the
number of keys extracted by RSSI is limited due to course-
grained channel characteristic. To improve the key generation
rate, a register RSSI based method [9] has been proposed, but
the achieved key generation rate is still relatively low (e.g.,
13.8 bits/s only). Hence, we reveal that the following two
fundamental challenges remain unsolved.

(1) Coarse-grained and noisy channel measurement
Physical-layer key generation is based on channel reci-

procity, which indicates the two communication parties will
have highly correlated channel measurements if the channel
can be probed within the channel coherence time. Therefore,
accurate and fine-grained channel measurement is the basis
for efficient key generation. Unfortunately, the commonly used
physical-layer characteristics for LoRa networks is RSSI [8],
[10], which can only provide coarse-grained channel informa-
tion. Some recent works [9], [11] utilize register RSSI to im-
prove the granularity of wireless channel, but the register RSSI
measurements are still noisy [9]. Therefore, existing channel
indicators cannot provide sufficient and accurate information
for physical-layer key generation in LoRa networks.

(2) Inefficient quantization process
In most physical-layer key generation systems, after obtain-

ing channel measurements, the next step is quantization which
converts channel measurements into binary bits (i.e., 1 or 0).
Although a variety of quantization mechanisms have been
proposed [8]–[12], the quantization process is inherently lossy
and error-prone [6]. Due to noisy channel measurement and the
low data rate of LoRa networks [13], the quantization-based
key generation system may need to exchange more packets to
obtain more channel information and run an additional infor-
mation reconciliation process to partially fix errors. Hence, it
may further lead to system inefficiency and lack of robustness.



B. Contributions

In this paper, we design and implement a novel physical-
layer key generation system for LoRa networks named Chirp-
Key, which essentially addresses the above challenges.

To enable fine-grained channel sampling, we take a closer
look at the CSS modulation of LoRa’s physical-layer. In our
preliminary study, we reveal that every chirp modulated in
sender has a constant amplitude, which can be utilized to
indicate channel state. Our insight is to divide a LoRa packet
into multiple chirps and calculate the fine-grained changes
of chirps. Following this idea, we propose a LoRa-specific
channel measurement named Chirp-Level Signal Strength In-
dicator (CLSSI) by analyzing the changes of the chirp units
in LoRa packets. Additionally, due to the half-duplex mode
(i.e., asynchronous channel sampling) of LoRa transceivers,
channel information may be missed which impairs the channel
reciprocity. Fortunately, with sufficient channel information
provided by CLSSI, we observe that the missing channel
information can be practically estimated. Therefore, we design
a channel state estimation algorithm by adopting a lightweight
spline fitting method, and the estimated CLSSI provides an
accurate and comprehensive measurement of wireless channel.

To address the second challenge, we propose a novel
Perturbed Compressed Sensing (PCS) based key delivery
method that can efficiently deliver a secret key generated
by one LoRa device to another. Inspired by the success of
compressed sensing theory, our initial idea is to deliver the
compressed key and reconstruct it on the receiver side directly
using compressed sensing with fair robustness. However, since
standard compressed sensing requires the same measurement
matrix to be pre-shared by Alice and Bob, using channel
measurements may not be able to construct the matrix, hence
it may fail to apply in our work. Alternatively, we leverage
PCS for the design of key delivery. Since PCS accepts the
tiny difference between the matrices of sender and receiver,
we intuitively use the channel measurements (i.e., similar but
not the same channel information) to construct the matrices,
where one matrix is used for compressing the secret key and
another matrix is used for decompressing the key. In particular,
due to decoupling the need for quantization and information
reconciliation process, the proposed method is able to effec-
tively achieve system efficiency and robustness for secret bit
agreement. Moreover, different from the quantization-based
methods, since the secret key is obtained from a random key
generator, ChirpKey can build a key with strong randomness.

We conduct extensive evaluations in both indoor and out-
door environments. Results show that ChirpKey achieves a
high matching rate and outperforms the state-of-the-arts. We
also demonstrate the security of ChirpKey against common
attacks via rigorous proof and evaluation. In summary, this
paper makes the following contributions.
• We propose ChirpKey, a novel physical-layer key generation

scheme for LoRa networks. ChirpKey addresses two key
limitations in existing work and enables fast and secure
physical-layer key generation.

• We propose a novel fine-grained channel state indicator,
named CLSSI. Compared to existing channel indicators,
CLSSI can provide fine-grained and accurate channel state
information. To improve the integrity of channel informa-
tion, we propose a lightweight channel state estimation
method to comprehensively recover the channel information.

• We propose a novel PCS-based key delivery scheme to
deliver secret keys. Compared to existing quantization-based
solutions, the proposed method improves the robustness
significantly. We demonstrate the security of the proposed
scheme via rigorous proof and extensive evaluation.

• We conduct extensive experiments to evaluate ChirpKey
in different real environments. Results show that ChirpKey
achieves an average key matching rate of 99.58% and a
key generation rate of 13 bits per measurement. Compared
to the state-of-the-arts, ChirpKey improves key matching
rate and key generation rate by 11.03–26.58% and 27–49×,
respectively. Results also show that it takes less than 0.2 s to
generate a 128-bit key and incurs low power consumption.

II. RELATED WORK

Wireless Key Generation. Wireless key generation has
received considerable attention over the past decades. In the
literature, a large volume of systems have been proposed for
different wireless technologies, such as Wi-Fi [6], [14], Zig-
bee [3], and Bluetooth [15]. In these studies, researchers have
used a variety of physical-layer features, including Channel
State Information (CSI) [6], [14], RSSI [9], [11], and phase
[16]. For example, TDS [6] exploited Wi-Fi CSI as channel
characteristics to generate keys for mobile devices. To enhance
the channel reciprocity of CSI, Liu et al. [14] leveraged
channel response in multiple Orthogonal Frequency-Division
Multiplexing (OFDM) subcarriers, coupled with a Channel
Gain Complement (CGC) scheme for key generation.

LoRa is an emerging wireless communication technology
designed specifically for long-range and low-power commu-
nications. The low data rate and long airtime feature of LoRa
bring new research challenges. To address these challenges,
several key generation systems for LoRa networks have been
proposed in recent years. For example, LoRa-Key [8] is the
first RSSI-based key generation method for LoRa. In their
follow-up research [9], a variant RSSI feature, register RSSI,
is exploited, which can provide finer granularity of channel
sampling for key generation. Recently, Yang et al. [11] utilized
the mean value of adjacent rRSSI (arRSSI) of LoRa signals
for key establishment on Internet of Vehicles (IoV) scenarios.
However, the performance of these systems is limited because
of the use of coarse-grained channel characteristics and ineffi-
cient quantization mechanism. Our work differs from existing
studies in two aspects. First, we propose a novel LoRa-specific
channel characteristics that can provide fine-grained channel
state information. Second, we propose a novel PCS-based
key delivery method instead of using quantization-based key
generation methods.

Compressed Sensing. Compressed sensing is a signal
processing technique used to reconstruct signals efficiently



by finding solutions for underdetermined linear systems. In
addition to data compression, it can also be applied in IoT
security schemes [17], [18]. For example, H2B [19] used a
compressed sensing-based reconciliation method to correct key
mismatches due to the low SNR of the heartbeat interval
signals. Additionally, Kryptein [18] proposed a compressed
sensing-based encryption method to enable secure data queries
for cloud-enabled IoT systems. Dautov et al. [17] explored the
feasibility of constructing secure compressed sensing matrices
based on wireless physical-layer security. These existing works
apply compressed sensing to different IoT security scenarios,
which inspires this paper to pioneer the use of a compressed
sensing framework for wireless key generation. Unlike existing
studies that used standard compressed sensing techniques for
IoT security, our work uses the perturbed version of com-
pressed sensing for the physical-layer key generation, which
is more practical in real-world applications.

LoRa Security. With massive deployments of LoRa net-
works, the security issues have attracted significant ef-
forts [20]–[23], with an emphasis on key management, au-
thentication, and physical-layer key generation. For key man-
agement, existing works mainly focus on the derivation, dis-
tribution, and destruction process of application layer keys,
including DevNonce [24] and NwkSKey [25]. Additionally,
researchers have exploited different features of LoRa signals
resulted from hardware imperfections for device authentication
purpose, such as carrier frequency offset [26], amplitude-
phase [27], and signal spectrogram [28]. However, such meth-
ods generally suffer from heavy computation cost and poor
scalability. Thus, key generation has emerged as a promising
solution for secure wireless communication due to its high
energy efficiency and prior-free requirements compared with
the aforementioned schemes. In this paper, we propose a novel
secret key generation scheme to provide robust and lightweight
key establishment for LoRa networks.

III. SYSTEM MODEL

A. User Model

We assume there are two devices in a LoRa network,
namely Alice and Bob, that intend to agree on the same key
to safeguard their communication. They are both embedded
with LoRa communication modules, with no prior sharing of
secrets. They follow the work-flow in Fig. 1 to generate keys
step by step. In the first phase, they measure the channel
by exchanging a number of probe and response packets.
Then both Alice and Bob start key generation phase, which
includes channel probing, channel state estimation, perturbed
measurement matrix generation, key compression and recon-
struction, and privacy amplification. Finally, the key is used
to encrypt/decrypt data to ensure secure communication.

B. Attack Model

We assume the presence of an attacker Eve, who tries
to intercept the communication with the aim of generating
the same key. Theoretically, due to the spatial de-correlation
nature of the wireless channel, Eve will obtain completely
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Fig. 1: System workflow.
different channel measurements if she is more than λ/2 away
from Alice or Bob, where λ is the wavelength of the LoRa
signal [5]. In practice, this condition can be easily satisfied
because if Eve is less than 16.4 cm away from either Alice or
Bob, she can be easily spotted (λ = 32.79 cm for 915MHz
LoRa). Same as prior works [6], [29], [30], we assume that
Eve has complete knowledge of the key agreement process
and that she has the ability to eavesdrop, inject, and replay
messages in the public channel. Additionally, we assume the
objective of Eve is to intercept the secret key rather than
jamming their key establishment process (i.e., a Denial-Of-
Service attack). In this paper, we consider three types of
attacks that are widely considered in previous works [29], [31].
• Eavesdropping attack. Since Alice and Bob need to ex-

change some information via a public channel during key
generation, Eve can eavesdrop their conversation. Then, with
the eavesdropped information, Eve tries to run ChirpKey to
establish the same key as Alice and Bob.

• Imitating attack. Imitating attack is a common attack in
mobile scenarios, where Eve observes the trajectory of Alice
or Bob, and tries to imitate its moving trajectory to ob-
tain similar channel measurements. However, as mentioned
above, Eve cannot be too close to Alice/Bob, otherwise it
increases the risks of being detected.

• Predictable channel attack. Predictable channel attack is a
common attack in static scenario, where Eve tries to inten-
tionally cause an expected change in channel measurements
between Alice and Bob. For example, when Alice and Bob
are static devices, Eve can travel regularly between them to
create predictable channel changes.

IV. CHIRP-LEVEL CHANNEL INFORMATION EXTRACTION.

This section presents the proposed fine-grained channel
indicator and a channel state estimation method to improve
channel reciprocity.

A. Fine-grained Channel Information for LoRa

As mentioned previously in Section I, existing physical-
layer characteristics for LoRa networks (e.g., RSSI) cannot
provide fine-grained channel information, impairing channel
reciprocity. As proof shown in Fig. 2, the correlation between
Alice and Bob using RSSI and register RSSI drops signif-
icantly as data rate is lower than 250 bps, leading to poor
channel reciprocity in physical-layer key generation. One of
our key observations reveals that changes of LoRa chirp can
indicate the channel states, which is promising to achieve
fine-grained channel measurement. Hence, we propose a novel
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CLSSI in the first step of ChirpKey (i.e., channel probing), as
shown in Fig. 1. In principle, the proposed CLSSI can enhance
channel reciprocity to obtain sufficient and accurate channel
information for key generation, compared with traditional
packet-level RSSI. The calculation details are as follows.

Recall each LoRa packet is composed of multiple chirps.
According to the definition of chirp x(t) = sin(ϕ(t)), where
ϕ(t) is a linear function for LoRa signal, the frequency of chirp
varies with time while the amplitude is constant; therefore, the
upper envelope of the received chirps can reflect the attenua-
tion of LoRa signal after propagating in the air, as illustrated
in Fig. 3. Inspired by this observation, we first divide a LoRa
packet into multiple chirp units. Then we detect the local
maxima of each chirp. Finally, we can obtain the CLSSI by
calculating the mean amplitude of the envelope of the local
maxima for each chirp. Compared to traditional RSSI and the
recently proposed register RSSI [9], [11], CLSSI offers two
advantages. First, CLSSI is LoRa-oriented and its calculation
process is lightweight, making it suitable for LoRa network.
Second, CLSSI is based on the chirp-level information, which
can provide fine-grained channel state information. As will be
demonstrated in Sec. VI-C, the performance of ChirpKey is
significantly improved after using CLSSI.

B. Channel State Estimation

The proposed CLSSI can provide fine-grained channel in-
formation, but the non-simultaneous channel sampling in time-
division duplex communication systems significantly impairs
the channel reciprocity. As shown in the upper figure of Fig. 4,
the CLSSI sequences acquired by Alice or Bob after channel
probing can only reflect half of the channel variance due to the
non-simultaneous channel sampling. In other words, Alice can
only extract channel information when it is receiving a packet
but not when it is sending a packet to Bob, and vice versa.
Besides, the measurement noise caused by hardware imper-
fections also deteriorates the performance of key generation.

To address these problems, we propose to use the channel
state when Alice and Bob are receiving packets to esti-
mate the channel state when they are sending packets, thus
both Alice and Bob can obtain the complete channel state
information during channel probing. Suppose the extracted
CLSSIs for Alice and Bob are SA = {S1

a, S
2
a, . . . , S

n
a }

and SB = {S1
b , S

2
b , . . . , S

n
b }, respectively, where Si

a and Si
b

are the CLSSI sequences obtained by Alice and Bob after
they receive the i-th packet. Note that because Bob first
sends a probe packet to Alice, the chronological order of

these CLSSI sequences is
(

S1
a × S2

a . . . Sn
a ×

× S1
b ×, . . . × Sn

b

)
,

where × means missed channel measurement at that time. We
can see S1

a and S1
b are not calculated simultaneously due to the

half-duplex mode of LoRa transceivers. To solve this problem,
we propose to interpolate to halfway between Alice and Bob’s
probing times. Take Alice as an example, we apply an inter-
polation on S1

a and S2
a to estimate S1′

a , which is the channel
characteristic measured at the same time as S1

b . By repeat-
ing the same procedure on the remaining CLSSI sequences,
Alice can obtain S′

A = {S1
a, S

1′

a , S2
a, S

2′

a , . . . , Sn
a , S

n′

a }. Sim-
ilarly, Bob can obtain the estimated channel characteristics
S′
B = {S1′

b , S1
b , S

2′

b , S2
b , . . . , S

n′

b , Sn
b }. In this way, both Alice

and Bob can obtain the complete channel characteristics
and each CLSSI is measured at the same time because the
chronological order of the estimated CLSSI sequences is(

S1
a S1′

a S2
a . . . Sn

a Sn′

a

S1′

b S1
b S2′

b . . . Sn′

b Sn
b

)
.

In ChirpKey, we choose uni-variate spline fitting [32]
method for the following reasons. First, compared with poly-
nomial fitting, the spline function uses low-order polynomial
for fitting, which is simple in calculation. Second, the spline
function is a piecewise function of low-order polynomial,
which guarantees smooth transitions between points and the
ability to converge. Therefore, spline fitting can provide fast
and stable channel estimation for ChirpKey.

To demonstrate the effectiveness of the above methods,
Fig. 5 plots the RSSI, register RSSI, and our CLSSI from
the same LoRa signal. We can observe that RSSI has fewer
sampling points and more outliers. Although register RSSI
provides more sampling points, most of the sampling points
are hardware noise. Moreover, only a small number of sam-
pling points are similar to RSSI but they are unstable. In
comparison, the proposed CLSSI can provide accurate and
fine-grained channel measurement for LoRa signals.

V. PCS-BASED KEY DELIVERY

As aforementioned, the traditional quantization process is
inherently lossy and may cause mismatches between legitimate
nodes [6], e.g., the fixed threshold may lead to mismatched
quantized bits for Alice and Bob [4], [29], [33]. While simply
using compressed sensing method may fail due to different
matrics caused by the channel measurements. To address, this
section presents the proposed PCS-based key delivery method.
Since the proposed method is based on perturbed compressed
sensing, we first briefly describe the technical background of
PCS, then present the measurement matrix generation, key



compression and reconstruction. Finally, we provide a rigorous
proof to demonstrate the security of the proposed method.

A. Principle of Perturbed Compressed Sensing

Compressed sensing is a technique in the signal processing
field which allows acquiring signals while taking few samples.
Assume there is a linear compression system y = Ax, where
x ∈ RN is the original signal, A ∈ RM×N (M < N) is the
measurement or sensing matrix, and y ∈ RN is the compressed
signal. Compressed sensing states that if x is sparse, it can
be reconstructed from far fewer samples than required by the
Nyquist–Shannon sampling theorem.

In standard compressed sensing, the measurement matrix
A is assumed to be exactly known and identical by the
compressor and receiver, so that the receiver can recover x
by ℓ1 minimization:

x̂ = argmin
x

∥x∥1 subject to ∥y −Ax∥2 < ϵ, (1)

where ϵ is used to account for noise. Unfortunately, such
an ideal assumption is not always the case in practice. For
example, when the compressed signal y and measurement
matrix A is transmitted from a compressor to a recoverer via
a wireless channel, the received y and A are often perturbed
versions due to noise:

Â = A+ E and ŷ = y + e, (2)

where E ∈ RM×N and e ∈ RM×1 denote unknown
perturbations from different sources, such as ambient noise,
measurement error, and coding error. In this case, the stan-
dard compressed sensing recovery process becomes how to
recover the original signal x from the perturbed compressed
signal y and measurement matrix Â. According to perturbed
compressed sensing theory [34], this problem can be solved
by the following ℓ1 minimization:

argmin
x,e,E

∥e∥22 + ∥E∥F + λ∥A∥1 subject to ŷ = Âx, (3)

where λ > 0 is the regularization parameter, ∥ · ∥2, ∥ · ∥F ,
and ∥ · ∥1 stand for ℓ2, Frobenius, and ℓ1 norms, respectively.
To solve the above ℓ1 minimization problem, we can use the
fast reconstruction algorithm based on total least-squares and
proximal splitting [34].

B. Perturbed Measurement Matrix Generation

Based on the above PCS theory, we propose a novel PCS-
based key delivery method. The main idea of our method is
since Alice and Bob have similar but not the same channel
measurements (i.e., S′

A and S′
B), if we can use S′

A and S′
B

to construct two measurement matrices that are similar to
A and Â above, then Alice can compress the key which
can be recovered by Bob. While for attacker Eve, since her
channel measurements are totally different, she cannot gen-
erate a similar perturbed measurement matrix to successfully
reconstruct the key. In the following, we present the details
of the proposed method which includes perturbation matrix
generation, compression and reconstruction.

Perturbation matrix generation. Structured matrix per-
turbation [35] is a commonly used perturbation with a fixed
structure in PCS. Each of its columns is an unknown constant,
which is imposed with a known operation that defines the
direction of the perturbation. In this paper, we use the circulant
matrix as the structured perturbation matrix because it is
easy to be implemented in low-power LoRa end nodes. The
construction method of a typical circulant matrix f(C) is
as follows. First, a random vector C is generated, that is,
C = (c0, c1, · · · , cN−1) ∈ RN . Then the generated random
vector C performs cyclic displacement for M times to con-
struct the remaining M − 1 row vectors. Finally, all the row
vectors are used to generate the entire matrix f(C) through
cyclic displacement as

f(C) =


c0 cN−1 · · · c1
c1 c0 · · · c2
...

...
. . .

...
cM−1 cM−2 · · · cM

 . (4)

Perturbed measurement matrix generation. We assume
there is a default sensing matrix A0 (we use random Gaussian
matrix in ChirpKey), and the goal of Alice and Bob is to use
their channel measurements to generate a perturbation matrix
which perturbs the default matrix. We find that using the
generated perturbation matrix to directly perturb the default
matrix will decrease the reconstruction capability when the
average value of the perturbation matrix is large. Thus, to
control the magnitude of the generated perturbation matrix, we
apply a scale factor η to the estimated CLSSI values of Alice
S′
A and Bob S′

B to control the magnitude of the perturbation
matrix of Alice: ŜA = 1

ηS
′
A and ŜB = 1

ηS
′
B . The analysis of

selecting a suitable η is presented in Sec.V-D. Afterwards, the
generated perturbed measurement matrices of Alice and Bob
can be obtained by adding generated perturbation matrix to
the default matrix A0 as

Aa = A0(I + Ea) and Ab = A0(I + Eb), (5)

where I is the identity matrix, Ea = f
(
ŜA

)
and Eb =

f
(
ŜB

)
are the generated circulant matrices of Alice and Bob.

C. Compression and Reconstruction

After obtaining the perturbation measurement matrices Aa

and Ab, Alice and Bob are able to perform information
compression and reconstruction.

Compression by Alice. First, Alice generates a random bi-
nary sequence KA ∈ RN . Since compressed sensing requires
sparse input, we sparse the random sequence by interpolating
four zero bits (sparsity level > 4) between each bit to
transform KA to be a spare vector Ks

A. Next, Alice calculates
a syndrome which is defined by Syn = [Syn1, Syn2] =
[AaK

s
A, AaKA]. The first part of the syndrome (i.e., AaK

s
A)

is a compression of the secret key Ks
A. The second part of

the syndrome (i.e., AaKA) is used for error checking and
correction. Afterwards, Alice transmits the syndrome Syn to
Bob through the public channel.



Algorithm 1: PCS-based key delivery.

Input: ŜA and ŜB : estimated CLSSI sequences measured by
Alice and Bob. A0: the original measurement matrix.

Output: KA and KB : secret keys for Alice and Bob.
1 Alice:
2 Aa = A0 + f

(
ŜA

)
3 KA = PRNG(seed) ▷ generate random key
4 Ks

A = sparse(KA) ▷ sparse the key
5 Syn = [Syn1, Syn2], Syn1 = AaK

s
A, Syn2 = AaKA

6 Send Syn to Bob via public channel
7 Bob:
8 Receive noised syndrome Syn′ = Syn+ e

9 Ab = A0 + f
(
ŜAB

)
10 Ks

B = solve ℓ1(Syn1, Ab)
11 K′

B = de-sparse(Ks
B) ▷ reconstruct the key

12 ∆ = AbK
′
B − Syn2

13 ∆AB = solve ℓ1(∆, Ab)
14 KB = K′

B ⊕∆AB ▷ solve the mismatched bits
15 return KA,KB

Reconstruction by Bob. Let Syn′ be the received syndrome
with some noise Syn′ = Syn+e = [Syn1+e, Syn2+e]. After
receiving the syndrome, Bob uses the first part of syndrome
(Syn1 + e) to reconstruct a sparse key Ks

B by solving the
following ℓ1-regularized total least-squares problem:

argmin
e,Ep,K

s
B

∥e∥22 + ∥Ep∥F + λ∥Ks
B∥1

subject to (Ab + Ep)K
s
B = Syn1 + e,

(6)

where Ep is the perturbation difference between Ab and Aa,
namely Ep = Ab − Aa. After obtaining the sparse key Ks

B ,
Bob de-sparses it to obtain K ′

B . After this step, Bob obtains
an estimated key K ′

B from the first part of the syndrome.
In practice, K ′

B is not exactly the same as Alice’s original
key KA because of noise. Therefore, Bob uses the second part
of the syndrome to correct the errors. To this end, Bob first
calculates a mismatched vector ∆ as follows

∆ = AbK
′
B − Syn2 = (AbK

′
B −AaKA) + e

= AbK
′
B − (Ab + Ep)KA = Ab(K

′
B −KA) + e

= Ab∆AB + e,

(7)

where ∆AB means the mismatches between Alice’s original
key KA and Bob’s estimation K ′

B . Since Alice and Bob are
legitimate devices, there are only few mismatches in their
keys, i.e, ∆AB is sparse. Therefore, Bob can reconstruct the
mismatches by solving the following ℓ1-regularized total least-
squares problem:

argmin
∆,e

∥e∥22 + λ∥∆∥1 subject to Ab∆AB = ∆+ e, (8)

With ∆AB , Bob can deduce KA by simply calculating
KB = K ′

B ⊕∆AB , where ⊕ is XOR operation. Finally, both
Alice and Bob agree on the same key KA = KB . The above
key delivery process is summarized in Algorithm 1.

D. Security of the Proposed Method

Since the syndrome Syn is transmitted via an unauthenti-
cated channel, the attacker Eve can also eavesdrop the message
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Fig. 6: Security of the proposed method.
syn′. With the knowledge of syn′, she can then perform
the three types of attacks discussed in Sec. III to derive her
own key KEve using the same method as Bob. We now
quantitatively demonstrate that the above vulnerability can be
addressed by properly choosing the perturbation matrices.

Corollary 1: Suppose the perturbation matrix of Alice, Bob
and Eve are Aa, Ab, and Ae, respectively. The PCS-based key
delivery method is perfectly effective (i.e., Bob can reconstruct
KA successfully) and secure (i.e., Eve is unable to reconstruct
KA successfully) if there exists a parameter ε satisfying

∥Ab −Aa∥2
∥Aa∥2

≤ ε <
∥Ae −Aa∥2

∥Aa∥2
. (9)

Proof 1: If Bob cannot recover ∆AB and KA with a ε
that satisfies condition ∥Ab−Aa∥2

∥Aa∥2
≤ ε, it is contradictory to

the sufficient condition for successful recovery according to
PCS theory [35]. If Eve can recover KA with ∥Ae−Aa∥2

∥Aa∥2
≤ ε,

it is contradictory to the necessary condition for successful
compressed sensing decoding [35].

Therefore, the problem becomes finding a feasible range
of ε that satisfies the Corollary 1 (successful reconstruction
of the legitimate node and the unsuccessful reconstruction
of the attacker). Fig. 6 plots the distribution of the lower
bound and upper bound of ε. We can see that there is a
feasible range [0.41, 0.56] to use. In other words, if ε lies
in the feasible range, Equation. 9 holds, meaning that Eve
cannot use her observed message syn′ to obtain the same
key. Therefore, we control ε within the feasible range in the
following experiments.

Prior studies also show that when the same measurement
matrix A0 is used repeatedly, the syndrome could be condi-
tionally accessed [8], [36]. This issue can be easily solved by
updating the original measurement matrix A0 periodically. For
example, after Alice and Bob agree on the same key, they can
use it as a seed of Gaussian random matrix generator to update
A0. Note that although we need to pre-store A0 in ChirpKey,
it is a public knowledge rather than a pre-shared secret.

E. Privacy Amplification
Although the PCS-based key delivery method achieves high

reliability as evaluated in Sec. VI, it also reveals some infor-
mation to attackers because Alice and Bob have to transmit the
syndrome in the public channel. This problem can be solved by
privacy amplification techniques, such as hash functions [8],
[29]. In ChirpKey, We employ the widely used hash function
SHA-128 as a privacy amplification technique to increase the
randomness of the final keys. After generating the same key,
Alice and Bob can use AES-128 or other symmetric key
encryption methods to encrypt/decrypt their communications.



VI. EVALUATION

A. Experimental Setup

Data collection. As shown in Fig. 7, we use three USRP
N210 SDR with WBX Daughterboard as Alice, Bob, and Eve,
respectively. We use the following LoRa parameters: F =
915MHz, BW = 125 kHz, SF = 12, and CR = 4/8, where
F denotes frequency, SF denotes spread factor, BW denotes
bandwidth and CR denotes code rate. Alice is configured to be
an end-device, and it is connected to a Raspberry Pi module
with 1.5 GHz Quad core Cortex-A72 and 4 GB RAM via
Ethernet cable. Bob is configured to be a LoRa Gateway, and
it is connected to a server with AMD EPYC 7522 64-core
processor via Ethernet cable. The LoRa radio signal processing
algorithm is implemented in C++ with GNU Radio in SDR.
The key generation algorithm is implemented in the server
and Raspberry Pi for Alice and Bob, respectively. As shown
in Fig 7, we conduct experiments in both indoor and outdoor
environments. In both environments, we consider two different
scenarios: static scenario where both Alice and Bob are static,
and mobile scenario where Bob is static but Alice is moving.
This setting is realistic because LoRa can be used in both static
wireless sensor networks and mobile networks. The attacker
Eve is placed 1m away from Alice. The whole experiment
lasted for two weeks and we collected more than 2,000,000
channel measurements at different times of different days.

8m

17m

Alice

Bob

Eve

(a) Indoor experiment.

100
m

200m

AliceBob
Eve

(b) Outdoor experiment.
Fig. 7: Experimental setup.

Metrics. For a key generation system, we follow two widely
used metrics: 1) Key matching rate (KMR) is the percentage of
the matching bits over all bits; 2) Key generation rate (KGR)
is the number of bits generated in one second.

B. Overall Performance

Baselines. We select below state-of-the-art quantization-
based key generation systems in LoRa as our baselines.
• LoRa-key [8] uses RSSI channel measurement and com-

pressed sensing based reconciliation.
• LoRa-liSK [10] uses RSSI channel measurement and error-

correction code based reconciliation.
• Gao et al. [9] uses register RSSI channel measurement and

compressed sensing based reconciliation.
• Vehicle-key [11] uses register RSSI channel measurement

and autoencoder based reconciliation.
To be fair, we adjust their settings to get the best results.

Specifically, for LoRa-liSK [10] and LoRa-Key [8], we set α
(the guard band ratio in quantization) to 0.8. For Gao et al. [9],
the interval is set to 20 and the round number is set to 50. For
CS-based reconciliation method in LoRa-Key [8] and Gao et
al. [9], the measurement matrix size is set to 50 × 128. For

Vehicle-key [11], the compressed size of autoencoder is set
to 64. For these methods, we use Arduino Uno with Dragino
LoRa Shield1 to collect RSSI and register RSSI values.

The results of different methods in various environments
are presented in Fig. 8, Fig. 9, and Fig. 10, respectively. From
Fig. 8, we observe that ChirpKey achieves the highest KMR in
all the scenarios. The average key matching rate of ChirpKey
is 25.61% higher than LoRa-liSK [10], 26.58% higher than
LoRa-Key [8], 16.31% higher than Vehicle-key [11], and
11.03% higher than Gao et al. [9]. The stability (i.e., standard
deviation) of the KMR obtained by ChirpKey also outperforms
other methods. From Fig. 9, we can see that the KGR of
ChirpKey is 27.5× higher than LoRa-key [8], 26.9× higher
than Vehicle-key [11], 49× higher than Gao et al. [9], and
27.5× higher than LoRa-liSK [10], respectively. Fig. 10 shows
the entropy of the keys generated by different methods. We
observe that ChirpKey improves entropy by 6-8% compared
with baselines. Additionally, as shown in Fig. 8 and Fig. 9,
the KMR in outdoor environment is lightly lower than that
of indoor areas because there are less multi-path effect in
outdoor areas. The KGR in mobile scenario is slightly higher
than that of static scenario because there are more channel
variations when Alice is moving. To sum up, the results show
that ChirpKey improves KMR, KGR, and entropy significantly
compared to the state-of-the-arts in different scenarios.

C. Evaluation of Chirp-level Channel Information

Impact of CLSSI. We now demonstrate the advantage of
the proposed CLSSI over two widely used channel measure-
ments in LoRa networks, namely RSSI and register RSSI.
As shown in Fig. 11, the proposed CLSSI achieves higher
KMR and KGR compared with both RSSI and register RSSI.
Specifically, the KGR is increased by 2.72% and 2.94%, while
the KGR is increased by 55.32× and 26.73× compared with
using RSSI and register RSSI, respectively. Therefore, our
CLSSI can provide fine-grained and accurate channel state
information for LoRa networks.

Impact of channel state estimation. In this experiment,
we evaluate the performance of the proposed channel state
estimation method. To this end, we compare the KGR with
and without channel state prediction. As shown in Fig. 12, the
proposed method consistently achieves higher matching rate in
all scenarios, indicating our method is effective in improving
the channel reciprocity for legitimate nodes and hence the
KGR. Specifically, the KGR is increased by 2×, 2.1×, 1.9×,
and 1.95× in indoor-static, indoor-mobile, outdoor-static, and
outdoor-mobile scenarios, respectively. Besides, the channel
state estimation method can also decrease the deviation of the
KGR, indicating it improves the stability of ChirpKey.
D. Evaluation of Parameters in the PCS Method

Impact of measurement matrix size. We examine the
impact of the size of measurement matrix on ChirpKey by
changing the matrix size from 40 × 128 to 58 × 128 (i.e.,
increase M from 40 to 58 gradually). As shown in Fig. 13, the

1https://www.dragino.com/products/lora/item/102-lora-shield.html
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average KMR increases as the matrix size increases, indicating
that the reconstruction capability of ChirpKey is improved
with larger size of compressed vector. However, the KMR
levels off when M is larger than 58, while the computational
overhead keeps increasing. Therefore, we set M to 58 in the
following experiments. To transmit a compressed vector of
size 58, 58 × 16 bits = 116 bytes are required. Since LoRa
offers a maximum payload size of 242 bytes, only one packet
is required to transmit the compressed vector.

Impact of scale factor. Then, we analyse the impact of the
size of scale factor on ChirpKey by changing the scale factor
η from 1 to 30. As shown in Fig. 14, the KMR increases as
the scale factor increases, suggesting that the reconstruction
capability of ChirpKey is improved with larger scale factor η.
We also notice that when η ≤ 25, KMR tends to be stable. So
we choose η = 25 for the follow-up experiments and analysis.

E. Evaluation of LoRa configuration

Impact of different SF. As shown in Tab. I, the KMR of
ChirpKey increases with the growth of SF . Specifically, the
KMR increases by 2.36% and 3.9% when SF increases from
7 to 9 and from 9 to 12, respectively. The slight improvement
of KMR can be explained as follows. The bit rate of LoRa
can be expressed as Rb = SF × BW

2SF × CR. Therefore, a
higher spread factor can provide a lower data rate, leading
to a smaller slope of the chirp frequency in LoRa signal.
In the meantime, the lower data rate makes the air time of
transmitting a chirp longer, which increases the duration of

TABLE I: KMR under different LoRa configurations.

BW
SF 7 9 12 Mean

125 kHz 94.33% 96.33% 99.58% 96.75%
250 kHz 92.92% 94.42% 98.76% 95.37%
500 kHz 91.32% 93.22% 98.32% 94.29%
Mean 92.86% 94.66% 98.89% 95.47%

channel state monitoring in the LoRa packet. On average,
ChirpKey achieves 92.86%, 94.66%, and 98.89% KMR for
SF = 7, SF = 9, and SF = 12, respectively.

Impact of different BW. From Tab. I, we can observe that
the KMR of ChirpKey decreases slightly with the increase of
BW . Specifically, the KMR drops by 1.42% and 1.13% when
BW increases from 125 kHz to 250 kHz and from 250 kHz
to 500 kHz, respectively. The reason is the same as above.
The data rate increases as BW increases, providing more
time to measure the channel variations. The results show that
our system can still achieve 96.75%, 95.37%, and 94.29%
KMR when the bandwidth is configured to 125 kHz, 250 kHz,
and 500 kHz, respectively, demonstrating the robustness of
ChirpKey in different bandwidth settings.

F. Security Analysis

Eavesdropping attack. In the eavesdropping attack, Eve
eavesdrops all the messages between Alice and Bob with the
aim of generating the same key by statically placing it close to
Alice. As discussed in Sec. V-C, the only message transmitted
between legitimate users is syn, which is the compressed
vector of Ks

A and KA. We now evaluate whether Eve can use
syn to deduce the same secret key. We assume that Eve has full
knowledge of ChirpKey, so she has the ability to conduct the
ℓ1- regularized solving process as Alice and Bob. As shown
in Fig. 15, Eve can only reach 50.14% and 49.67% KMR
in indoor and outdoor environments, respectively. Therefore,
even Eve can eavesdrop the exchanged information between
Alice and Bob, she still cannot use the information to deduce
the secret key. This is due to the spatial de-correlation of
wireless channel, the channel measurements of Eve is different
from Alice and Bob. Therefore, the measurement matrix con-
structed by Eve cannot be used to reconstruct the compressed
vector syn of KA. Reconstructing the syn with dissimilar
measurement matrix result in wrong predictions and Eve can
only achieve about 50% KMR as shown in the experiment.



Imitating attack. In the imitating attack, Eve is able to
observe the mobile behavior of Alice. Then Eve tries to follow
Alice’s trajectory to obtain similar channel measurements with
Alice with the aim of generating a similar perturbation matrix
as Alice. Since path loss, shadow fading, and small-scale
fading account for the majority of the channel measurements
fluctuations, following Alice’s trajectory will result in similar
path loss and shadow fading, but not multi-path effect, which
is the primary source of randomness [4], [37], Therefore, Eve
cannot obtain similar channel measurements as Alice. Fig. 15
shows the KMR of Eve in indoor and outdoor environments.
We can observe that the KMR of ChirpKey is 99.96% and
99.43% in indoor and outdoor environment, while the KMR
of Eve is only 48.28% and 51.59% in indoor and outdoor
environments, respectively.

Predictable channel attack. In the predictable channel
attack, Eve tries to make predictable changes to the channel
between Alice and Bob, with the goal of obtaining the same
channel measurements as Alice and Bob. We evaluate the
predictable channel attack by asking a volunteer to periodically
moving with a fixed trajectory between Alice and Bob. In this
way, the measured CLSSI between Alice and Bob becomes
predictable to Eve. As shown in Fig 15, the KMR of Eve is
only 50.18% and 47.59% in indoor and outdoor environments,
respectively. The results show that due to the time-varying
nature of wireless channel and multi-path effect, Eve cannot
obtain similar CLSSI as Alice and Bob. Therefore, ChirpKey
can successfully defend predictable channel attacks.

The above results show that through the three attacks Eve
can generate keys with up to approximately 50% KMR, which
means if we use 128-bit key for encryption, the probability
of deducing the same key is extremely low, i.e., 0.5128 =
2.94e−39. Therefore, the fading nature of the wireless channel
can guarantee the secure communication of Alice and Bob.
Eve cannot obtain the same key as long as she is half
wavelength away from Alice or Bob, which is a practical
assumption in real-world scenarios.

G. Key Randomness

The randomness of the generated keys is verified using
the NIST set of statistical tests [38]. P-values are produced
by this suite to show how random the key sequence is. The
randomness hypothesis is rejected if the p-value is less than
1%, indicating that the secret key is not random. We can
observe from Tab. II that every p-value for all tests is greater

TABLE II: NIST test.

Test Static
Indoor

Mobile
Outdoor

Static
Indoor

Mobile
Outdoor

Freq. 0.502 0.941 0.725 0.775
Block Freq. 0.321 0.743 0.709 0.757

Cumsum (Fwd). 0.621 0.821 0.609 0.802
Cumsum (Rev). 0.475 0.743 0.744 0.687

Runs. 0.917 0.089 0.492 0.121
Longest Run of 1’s. 0.155 0.349 0.669 0.811

Approx. Entropy. 0.998 1.000 0.999 1.000
FFT. 0.281 0.293 0.541 0.729

Serial. 0.766 0.329 0.124 0.623

than 1%, suggesting that the generated keys by ChirpKey pass
the random test and have a high level of randomness.

H. Computational Overhead

We evaluate the computation time and energy consumption
required for ChirpKey to generate a 128-bit key. We use
power monitor 2 to calculate the energy consumption of end
device. The computation time is calculated by using the built-
in time calculation function in the debug tool. The computation
time and energy consumption of different components are
shown in Tab. III. Note that Alice and Bob perform different
steps as end node and the gateway, respectively. In addition,
the computation time for perturbation matrix generation and
privacy amplification are in the order of microseconds and
therefore not included in Tab. III. The results show that key
generation can be completed within 0.2 s and require low
energy consumption to generate a 128-bit key.

TABLE III: Computation overhead.

Stage
User Performance Computation time (ms) Energy consumption (mJ)

Alice Bob Alice Bob
Channel variance estimation 1.98 0.22 7.843 -
Compression/reconstruction 0.0108 198 0.0713 -
Total 1.9908 198.22 7.9143 -

VII. CONCLUSION

In this paper, we propose ChirpKey, a physical-layer key
generation system for LoRa networks. In ChirpKey, we pro-
pose a number of novel methods to significantly improve
the performance of key generation process. First, we design
CLSSI, a LoRa-specific channel indicator to provide fine-
grained and accurate channel information. Additionally, we
propose a lightweight channel state estimation method to
comprehensively recover the channel information. Then, we
propose a novel PCS-based key delivery method to securely
deliver the secret keys. Extensive evaluations show that Chirp-
Key achieves an average KMR of 99.58% and outperforms ex-
isting techniques by 11.03%–26.58%. In addition, our security
analysis shows that ChirpKey is resistant to several common
attacks. Results also show that ChirpKey takes less than 0.2 s
to generate a 128-bit key, proving that ChirpKey can provide
fast and secure wireless key generation for LoRa networks.
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