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Abstract—Recent years have witnessed the remarkable growth
of the Internet of Vehicles (IoV). Due to the high dynamics and
ad-hoc nature of IoV communication, the lack of effective secret
key establishment in IoV remains a security bottleneck. Physical
layer key generation has emerged as a promising technology
to establish a pair of cryptographic keys in a lightweight and
information-theoretic secure way. However, prior works mainly
focus on legacy communication technologies such as Wi-Fi,
ZigBee, and 5G which can only achieve short range IoV commu-
nications. The emergence of Long-range (LoRa) communication
technology that features long-range, low power, and extremely
low data rate, brings new challenges for key generation in long
range IoV scenarios. In this paper, we present Vehicle-Key, which
is a secret key generation system to secure LoRa-enabled IoV
communications. In Vehicle-Key, we design a novel deep learning
model that can achieve channel prediction and quantization
simultaneously. Additionally, we propose an autoencoder-based
reconciliation method that improves the key agreement rate
significantly. Extensive real-world experiments show that Vehicle-
Key improves the key agreement rate by 15.10%–49.81% and
key generation rate by 9–14× compared with the state-of-the-art.
Security analysis demonstrates that Vehicle-Key is secure against
several common attacks. Moreover, we implement Vehicle-Key on
a Raspberry Pi and show that it can be executed in 3.4ms.

Index Terms—Internet of Vehicles, Physical layer key genera-
tion, LoRa

I. INTRODUCTION

A. Background and Motivation

The rapid development of the Internet of Vehicles (IoV),
which aims to connect any objects in the vehicle networks
to improve the urban transport system, reduce accidents, and
enhance the traffic monitoring system, has gained considerable
attention due to its ubiquitous feature. As shown in Fig. 1,
heterogeneous objects in IoV are connected by various short
and long-range wireless communication technologies to meet
the demands of different communication components such as
vehicle-to-vehicle (V2V), vehicle-to-road (V2R), vehicle-to-
human (V2H), and vehicle-to-infrastructure (V2I).

Vehicle-to-everything (V2X) systems require sensitive in-
stantaneous information such as vehicle speed and coordinates
to be exchanged frequently with other vehicles and necessary
infrastructures through the wireless medium. Therefore, se-
curing such information exchange is critical to ensure both
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Fig. 1: Long-range and short-range communication scenarios
in V2X.

the normal operation of vehicular systems and the safety of
passengers. For example, malicious attackers can passively
eavesdrop the communication and hack the passcode to hi-
jack the control unit of vehicles [1], resulting in serious
consequence or even death of the passengers. To achieve
secure V2X communication, secure key establishment—the
procedure wherein two legitimate nodes establish a secret key
through a public channel—is highly demanding nowadays.
However, traditional key establishment schemes such as public
key infrastructure (PKI) and pre-shared key (PSK) are not
suitable for IoV due to the following two reasons: 1) it is
hard to guarantee the availability of PKI in ubiquitous IoV
systems because of the rapid temporal variability and short-
time connections of IoV communications; 2) the PSK is
not flexible, scalable and can be easily stolen by malicious
attackers. Overall, the high mobility and ad-hoc nature of IoV
make secure key establishment schemes challenging.

To overcome the aforementioned limitations, physical layer
key generation based on channel reciprocity has emerged as a
promising technology to establish cryptographic keys for two
IoV communication parties. It relies on the principle that the
channel characteristics such as Received Signal Strength Indi-
cator (RSSI) observed by the two communication parties will
be similar if the communication packets are exchanged during



channel coherence time 1 [2]. Existing studies mainly focus on
legacy communication technologies such as ZigBee [3], Wi-
Fi [2], [4], [5] and 5G [6], whose communication distance is
usually in the order of hundreds of meters or even shorter. The
requirement of long distance communication prevents many
short range wireless communication technologies (e.g., WiFi,
Zigbee) from being adopted for secret key generation for IoV
systems. LoRa, as one of the prevalent low-power wide-area
network (LPWAN) communication technologies, provides a
promising solution to long-range IoV secret key generation.

B. Challenges and Contributions

One may ask “since physical layer key generation has
been well studied, why cannot we directly apply existing
solutions to LoRa-enabled IoV systems?” Through revisiting
previous secret key generation approaches, we found that
existing technologies are not suitable because LoRa-enabled
IoV system poses the following two novel challenges for
wireless key generation.
1) Long packet airtime of LoRa. The key difference be-

tween LoRa and legacy communication technologies is that
LoRa’s long communication distance is achieved by sacri-
ficing its data rate. The data rate of short-range communica-
tion technologies such as ZigBee and Wi-Fi is in the order
of kbps or Mbps while the data rate of LoRa can be low as
tens of bps. The low data rate in turn increases the packet
airtime and thus decreases the channel reciprocity because
packets cannot be exchanged during the channel coherence
time. Hence, the channel characteristics measured by two
sides are not similar, which rarely happens for short-
range communication technologies. Therefore, traditional
approaches developed for Wi-Fi and ZigBee cannot be
applied directly in LoRa physical layer key generation.

2) High mobility of the vehicles. Unlike the traditional wire-
less network, the vehicles in IoV are highly mobile, and the
communication environment changes rapidly. Therefore,
in V2X communication scenarios, the fast fading effect
will further exacerbate the above low channel reciprocity
problem. However, most existing studies on LoRa physical
layer key generation assume the devices are either in fixed
location [7] or in low mobility [8], which are not suitable
for dynamic IoV scenarios in reality.

A set of pioneering efforts have been made for LoRa-based
network [7]–[10]. For example, Han et al. [9] proposed to use
multi-bit quantization algorithm and a cascade reconciliation
method to generate keys for LoRa-enabled IoV. However, the
cascade reconciliation method requires two legitimate nodes
to conduct multiple rounds of secret key-related information
exchange, which increases the communication overhead and
the risk of privacy leakage as well. Gao et al. [10] proposed a
novel model-based key generation scheme for LoRa network
which has limited key generation rate and is only suitable for
static nodes. Therefore, how to establish cryptographic keys

1Coherence time is the time duration over which the channel can be
considered to be stable

effectively and efficiently for long range IoV communications
remains an open problem.

To address these challenges, we present a secret key es-
tablishment scheme for secure V2X communication called
Vehicle-Key. In Vehicle-Key, we propose a novel model that
can achieve channel prediction and quantization simultane-
ously. Moreover, we design an autoencoder-based reconcil-
iation method to correct the mismatches between the keys
of legitimate devices. Evaluation in real-world environments
shows that Vehicle-Key can achieve a high agreement rate and
outperform state-of-the-arts significantly. The main contribu-
tions of this paper are as follows:
• We conduct a detailed study to explore the feasibility

and challenges of physical layer key generation for LoRa-
enabled V2X communication. Based on the findings, we
present a secret key establishment scheme Vehicle-Key.

• We propose a novel Bi-directional LSTM (BiLSTM)-based
model that can achieve channel prediction and quantization
simultaneously. The proposed model addresses the low
correlation problem of LoRa channel measurements and
hence improves key agreement rate significantly.

• We design an effective autoencoder-based reconciliation
method to correct the mismatches between the keys gen-
erated by two parties. The proposed method outperforms
state-of-the-art methods in terms of both error correction
capability and computational cost.

• Extensive real-world experiments show Vehicle-Key can
achieve an average key agreement rate of 98.87% and
key generation rate of 15 bits/s. Compared to the state-of-
the-art, Vehicle-Key improves key agreement rate and key
generation rate by 15.10%–49.81% and 9–14×, respectively.
Security analysis shows Vehicle-Key is resistant to some
common attacks, such as eavesdropping attack and imitating
attack. Moreover, we implement the system on a Raspberry
Pi and show that Vehicle-Key can be executed in 3.4ms
while incurring low energy consumption.
The rest of the paper is organized as follows. We present

the preliminary results in Sec. II. Then, we discuss the system
model and design details in Sec. III and Sec. IV, respectively.
Followed by that, we evaluate the Vehicle-Key in Sec. V and
discuss the related work in Sec. VI. Finally, we conclude the
paper in Sec. VII.

II. PRELIMINARY STUDY

In this section, we conduct both theoretical and experimental
analysis to identify the challenges of physical layer key
generation for LoRa-based IoV communications.

A. Theoretical Model

Physical layer key generation is based on the reciprocity
property of radio channel that is multipath properties such
as gains, phase shifts and delays are identical on both di-
rections of a radio link [11]. Although the radio channel is
reciprocal, the channel measurements are not reciprocal due
to the following reasons. First, slight time delay on both
directions results in measurement inconsistency. Second, even
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the transmitter and receiver use the same LoRa module (e.g.,
SX1278), the hardware imperfection may result in difference
in signal measurement. Third, the received signal is mixed
by additive noise. Last, the interference power is asymmetric
between devices. As stated by Xu et al. [8], the first condition
is the main challenge for LoRa-based key generation because
of its long packet airtime.

Impact of packet airtime. First, we analyze the impact of
packet airtime in LoRa-based IoV communication. Suppose
Alice probes the channel at time T1 and Bob probes the
channel at time T2, then the time delay ∆T = T2 − T1 is
mainly caused by three factors: transmitting time Tt, prop-
agation time Tp and operation delay Td. The propagation
time is negligible because the transmission speed of radio is
C = 3×108 m/s (the speed of light). For example, suppose the
distance between Alice and Bob is 10 km, then the propagation
time Tp = 10000

3∗108 = 33.4 us. According to our experiments, the
hardware operation delay is in milliseconds. Therefore, ∆T is
largely dependent on the transmitting time of LoRa transceiver,
namely Tt. The transmitting time Tt is further dependent on
the bit rate Rb and packet length L: Tt =

L
Rb

. The bit rate of
LoRa is Rb = SF × BW

2SF × CR, where SF denotes spread
factor, BW denotes bandwidth and CR denotes code rate.
The LoRa radio packet consists of preamble, header, payload
and Cyclic Redundancy Check (CRC). The minimum size of a
LoRa packet is eight symbols. To achieve long communication
distance, the bit rate Rb has to be reduced. Based on different
parameter settings, the bit rate of LoRa can be low as hundreds
of bps resulting in up to hundreds of milliseconds delay.

Impact of vehicle’s speed. Then, we analyze the impact
of vehicle’s speed on channel coherence time. Theoretically,
the rate at which the radio channel remains stable can be
represented by Doppler frequency (fd) in frequency domain
and channel coherence time (Tc) in time domain. Depending
on the communication environment, the vehicular wireless
communication is modeled differently. Based on the speed of
the objects, the channel in IoV communication can be divided
into fast fading channel and slow fading channel.

The fast fading in IoV can be well modeled by Rayleigh
distribution [12]. The fast fading channel is suitable for the
scenario that there is a large velocity difference between Alice
and Bob. In this scenario, the channel gain H should abide by
the following probability distribution function (PDF):

PDFH(H,σ) =
H

σ2
e−H2/(2σ2), (1)

where δ is an environment-related parameter. In this model, the
channel coherence time is calculated by Tc ≈ 0.423

fd
, where the

Doppler frequency shift fd is dependent on the speed between
Alice and Bob: fd = |VA−VB |

C f0, where C is the speed of light,
f0 is the carrier frequency, VA and VB is the speed of Alice
and Bob, respectively.

The slow fading in IoV can modeled by log-normal shadow
fading channel [13]. The slow fading model is useful when the
relative speed between Alice and Bob is low. In this scenario,

(b) Impact of vehicle speed(a) Impact of packet airtime
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Fig. 2: Experimental verification.

the channel gain H is modeled by a log-normal distribution:

PDFH(H,σ) =
1

Hσ
√
2π

e−
ln(H)

2σ2 . (2)

If the channel in a slow fading channel does not move over
a particular distance (often termed as coherence length Lc), it
remains correlated. If we assume the speed of the vehicle is
V , the channel coherence time is calculated by Tc ≈ Lc

V .
From the analysis above, we can see that the speed of the

vehicle plays a crucial role in the calculation of coherence time
Tc. The higher the speed is, the more frequent the channel
changes and the smaller the coherence time is. However, as
we mentioned at the beginning of this section, we need to
ensure ∆T ≤ Tc so that Alice and Bob can have similar
channel measurements. Unfortunately, this condition is not
always true due to the low bit rate of LoRa and the high
speed of vehicles. For example, if we transmit a 16 bytes
packet at 183 bps (BW = 125 kHz, SF = 12, CR = 4/8,
f0 = 434MHz), the time delay ∆T is about 700ms. However,
if we assume the speed difference |VA − VB | is 40 km/h, the
channel coherence time is 27ms only, which is significantly
lower than ∆T . To sum up, the low data rate of LoRa and
high speed of vehicles make physical layer key generation
challenging in IoV communication systems.

B. Experimental Verification

To validate the above theoretical analysis, we conducted
a comprehensive study in real-world environments using real
cars and LoRa modules. We categorize the experiments into
two scenarios: rural scenario and urban scenario. In rural sce-
nario, Alice and Bob are placed with a straight long path with
line-of-sight (LOS). In urban scenario, two nodes are placed
with obstacles (e.g., concrete buildings, etc.). Thus, there is
no line-of-sight (NLOS) between them. In each scenario, we
explore two V2X applications: V2I (Vehicle to Infrastructure)
and V2V (Vehicle to Vehicle). For brevity, we summarize the
environment settings as follows:

• Experiment 1: Vehicle to Vehicle in rural.
• Experiment 2: Vehicle to Infrastructure in rural.
• Experiment 3: Vehicle to Vehicle in urban.
• Experiment 4: Vehicle to Infrastructure in urban.
In V2V scenarios (Experiment 1 and 3), two devices are

placed on the top of two cars. In V2I scenarios (Experiment
2 and 4), one device is installed on the roof of a building and
the other one is placed on the top of a car. The details of the
environment and hardware are explained in Section V. The
channel physical characteristics used in the experiments are
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Fig. 3: Preliminary study (Exp.1,2,3,4 represents the experiment under V2V rural, V2I rural, V2V urban, and V2I urban respectively).

RSSI which is the most commonly used metric for LoRa [8],
[13]. To quantify the correlation between Alice’s channel
measurement and Bob’s channel measurement, we use Pearson
correlation coefficient.

Experiment on packet airtime. To verify the impact of
packet airtime, we fix the vehicle speed to be 50 km/h and
calculate the correlation between Alice’s RSSIs and Bob’s
RSSIs by changing the data rates from 23 bps to 1172 bps. As
shown in Fig. 2 (a), the correlation decreases when a lower
data rate is used, verifying the previous theoretical analysis
that the long packet airtime caused by the low data rate will
lead to lower correlation. The correlation drops below 0.6
when the data rate is lower than 293 bps, posing a significant
challenge for LoRa-based key generation in IoV scenarios.

Experiment on vehicle’s speed. To verify the impact of
vehicle speed, we fix the data rate to be 183 bps and calculate
the correlation between Alice’s RSSIs and BoB’S RSSIs by
changing the speed from 10 km/h to 80 km/h. As shown
in Fig. 2 (b), the correlation decreases when vehicle’s speed
increases, verifying the previous theoretical analysis that the
higher the vehicle’s speed is, the lower the correlation is.
The correlation drops below 0.6 when the vehicle’s speed
exceeds 30 km/h, posing another challenge for LoRa-based
key generation in IoV scenarios.

C. Our findings

During the experiments, we noticed that the commonly
used RSSI is the averaged packet RSSI (pRSSI), which is
the average of RSSIs measured during packet reception. The
use of pRSSI will result in asymmetry between the two
communication parties because the packet airtime in LoRa
could be in hundreds of milliseconds or even a few seconds,
and the channel conditions may change completely during
this relatively long period. We found that the SX127X LoRa
transceiver also provides register RSSI (rRSSI), which is
the instantaneous RSSI during packet reception and thus can
provide finer granularity.

To verify the feasibility of using rRSSI to improve cor-
relation, we compare RSSI and rRSSI in Fig. 3. The first
row of Fig. 3 shows the RSSIs of each experiment and their
corresponding correlation coefficients. We can see that the
correlation is lower than 0.5 in all the experiments except
experiment 1. All of them exist a LOS between two devices.

rRSSI (Alice)
rRSSI (Bob)

pRSSI (Alice)
pRSSI (Bob)

R
SS

I 
(d

B
m

)

−100

−90

−80

−70

−60

Time (μs)
0 50 100 150 200

packet RSSIs are not close

adjacent register RSSIs are close

Fig. 4: Packet RSSI vs Register RSSI.

Therefore, the RSSIs measured by Alice and Bob exhibit low
correlation because of the low data rate of LoRa and the high
mobility of IoV. This finding corresponds to our theoretical
analysis above. Then, we plot the rRSSIs of each experiment
and their correlation coefficients in the second row of Fig. 3.
We can see that the correlation is significantly higher than that
of using pRSSI in all experiments.

The advantage of rRSSI over pRSSI can be explained by
Fig. 4. First, due to the low data rate, the RSSIs vary greatly
during the packet transmission and reception. For example,
we can see that the first half part of the samples are different
from the second half samples. This phenomenon holds for
both Alice’s rRSSIs (red color) and Bob’s rRSSIs (black
color). Therefore, using their average RSSI, namely pRSSI,
cannot represent the channel changes during packet reception.
Instead, we noticed that the ending part of Alice’s rRSSIs is
close to the beginning part of Bob’s rRSSIs. This is because
the timestamps of sampling are close to each other (possibly
within channel coherence time). The findings here motivate
us to use rRSSI as channel characteristics to generate keys
to improve the correlation between Alice and Bob. Second,
the number of rRSSI samples that can be generated in one
LoRa packet is significantly larger than pRSSI, which indicates
that rRSSI can be utilized to improve the key generation rate.
However, the instantaneously rRSSI cannot be directly used
to generate keys because there still exist some variations as
shown in Fig. 4. We propose to employ the mean value of
adjacent rRSSI as a new feature for key generation, namely
adjacent register RSSI (arRSSI). To sum up, the preliminary
studies not only identifies the challenge but also provide
intuitions that can be used to address the challenge. In the
followings, we will present system model and design details.
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III. SYSTEM MODEL

In this section, we present the system model of Vehicle-
Key. We assume that two IoV objects, namely Alice and Bob,
intend to generate the same key to secure their communication.
One of the objects is a moving vehicle and the other can be
moving vehicle, road side unit (RSU) or infrastructure. They
are equipped with LoRa communication modules but have
no prior shared secrets between each other. We also assume
the existence of an attacker Eve who tries to eavesdrop the
communication and guess the same key. The LoRa channel
reciprocity between Alice and Bob is the basics of Vehicle-
Key, i.e., the channel has the same random state if measured in
either direction at the same time. As the channel decorrelates
in space, the Alice-Eve and Bob-Eve channels are statistically
uncorrelated with the Alice-Bob channel. In theory, Eve will
measure totally different channel if she is more than λ/2 away
from either Alice or Bob, where λ is the wavelength of the
radio waves (λ = 69.12 cm for 434MHz LoRa) [4].

Like many prior works [5], [14], [15], we assume that Eve
has the full knowledge of the key agreement protocol and
she has the ability to eavesdrop, inject, and replay messages
in public channel. Meanwhile, we assume the goal of Eve
is to intercept the secret key rather than jamming their com-
munications (i.e., DOS attack). In this paper, we consider two
common attacks that are widely used in previous physical layer
key generation system [14], [16].

• Eavesdropping attack: Eve tries to eavesdrop on the trans-
mission information of all nodes in the public channel
with the aim of generating the same keys.

• Imitating attack: Eve can observe the driving route of
Alice or Bob and try to imitate its driving process to
obtain similar channel measurements to generate keys.

Eve can also perform Man-in-the-Middle (MITM) at-
tack [17] and reply attack [18]. For these well-studied attacks,
we use existing methods which will be discussed in Sec. IV-C.
We do not consider other types of attacks such as predictable
channel attack [2], [16], where the attacker deliberately move
between two devices to cause predictable channel variations.
This is because these attacks are usually performed for two
static devices but are not suitable for highly mobile vehicles.

IV. SYSTEM DESIGN

A. Overview

Fig. 5 shows the work-flow of Vehicle-Key. Suppose Alice
and Bob are two objects in IoV communication system that
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Fig. 6: BiLSTM-based prediction and quantization model.

need to generate or update a pair of cryptographic key to
secure their communication. In the first phase, they measure
the channel characteristics by exchanging a number of probe
and response packets. Then both Alice and Bob start key
generation phase, which includes quantization, reconciliation,
and privacy amplification. Finally, the key is used to en-
crypt/decrypt data to ensure secure communication.

B. Prediction and Quantization

As discussed in Section II, the main challenge is the channel
characteristics observed by Alice and Bob are not close to
each other because they cannot be measured within channel
coherence time. Although the use of arRSSI can increase
the correlation between the channel measurement values of
Alice and Bob, it is desired that the correlation can be further
improved to achieve better system performance. To this end,
we propose a BiLSTM-based model to achieve simultaneous
prediction and quantization. As shown in Fig. 6, the proposed
model consists of prediction module and quantization module.
The prediction module is used to predict the channel measure-
ments within channel coherence time while the quantization
module is used to convert the predicted arRSSI values into
binary bit strings. The input of the model is the arRSSIs
observed by one communication party, say Alice. The output
is the generated bit sequence. Below we discuss the details.

Prediction module. Since Alice and Bob cannot measure
the channel at the same time, our idea is to predict the
measurement of one side (say Bob) based on the measurement
from another side (say Alice). The prediction module consists
of a BiLSTM layer and a fully connected layer. The BiLSTM
layer is designed as follows. Each BiLSTM layer contains 32
cells, which is composed of 128 hidden units. The number
of hidden units 128 is chosen empirically to prevent over-
fitting while keeping good performance. We choose the BiL-
STM neural networks [19] for prediction due to its superior
performance on learning features from sequences with high
temporal correlation, which matches the time-varying nature
of wireless channel [20]. After the BiLSTM layer, we add
one fully connected layer to convert the features extracted
by BiLSTM into predicted arRSSI sequence, which is close
to Bob’s real measurements. Here we only set up one fully
connected layer to complete the conversion because BiLSTM
learns the overall features rather than the local features of the
sequence, and does not need to integrate local features through
multiple fully connected layers.
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Quantization module. After prediction, both Alice and
Bob need to convert the arRSSI values into binary bits.
Conventionally, this step is done by adding an individual
module called quantization [2]. In Vehicle-Key, we mitigate
this extra cost by adding a quantization module after the
prediction module in the same network. This module uses
sigmoid activation function after a fully connected layer to
convert the output matrix of the prediction layer into a binary
vector. For Alice, we use sigmoid function because it matches
the function of quantizer, i.e., it can map real numbers to the
interval (0,1) in a smooth and easy way. The combination of
fully connected layer and activation layer can fit a nonlinear
transformation, and map the predicted sequence to a 64-bit
binary bit space. Using a fully connected layer for mapping
can increase the stability of the quantization layer because a
small amount of errors in predicted arRSSI sequences have less
impact on predicted bit sequence. For Bob, we use the multiple
bit quantizer proposed in [2] because it can effectively generate
more bits compared to single threshold based methods.

Joint loss function. Combining prediction module and
quantization module into a neural network can be more
convenient for training, and the joint loss function can be used
to optimize the two modules together to reduce extra cost. For
the entire network, the joint loss function of the whole network
is defined as follows:

loss(y, ŷ, z, ẑ) = θ×MSE(y, ŷ)+(1−θ)×BCE(z, ẑ), (3)

where y and ŷ denote the measured arRSSI values and
the predicted arRSSI values, z and ẑ denote the binary bit
sequences and the predicted sequences of Bob. For our joint
task training, we add a hyperparameter θ to balance the
weights between BCE and MSE loss to achieve the overall
optimal performance. Here, MSE represents Mean Squared
Error while BCE denotes Binary Cross Entropy, and they are
defined as follows:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2
, (4)

BCE(z, ẑ) = −
n∑

i=1

zi log ẑi + (1− zi) log (1− ẑi) . (5)

The principle of the designed loss function is as follows.
The proposed model is inherently a multi-task network which
serves prediction and quantization purpose. On the one hand,
since the aim of Alice is to train a channel prediction model
that can predict Bob’s arRSSI sequence, we can treat the
learning process as a regression problem. In this case, MSE
is a commonly used loss function in regression tasks and it
can better learn the difference between the measured arRSSI
sequence and the predicted arRSSI sequence. On the other
hand, the quantization task can be regarded as a classification
task with a prediction result of 0 or 1. From this perspective,
BCE is a commonly used loss function for binary classifi-
cation tasks. Therefore, we integrate MSE and BCE into a
single loss function by assigning a weight for each function.

The proposed network presents several advantages over
previous approaches. Firstly, the prediction module solves the
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aforementioned low channel reciprocity problem by predicting
sequence from the other side. Secondly, the quantization is
done seamlessly in the whole network without adding extra
modules, which improves the efficiency of training. More
importantly, it only needs to be executed on one device such
as power-rich devices (e.g., RSU and server). As demonstrated
in Sec. V-J, this module only requires 3.38ms to execute.

C. Autoencoder-Based Reconciliation

In practice, we often get KAlice ≈ KBob due to noise. The
reconciliation module aims at correcting the bit mismatches
between them. While a variety of reconciliation methods
have been proposed such as Cascade [21], Error-correction
code [22], a recently proposed compressed sensing (CS)-
based algorithm [23] has been demonstrated to show better
performance. However, it requires multiple iterations in the
decoding process which is time-consuming. Recently, deep
learning methods such as autoencoder has been employed as
new framework of CS [24] to recover images with promising
speed and accuracy. Motivated by this, we propose a novel
autoencoder-based reconciliation framework to correct the
mismatches between Alice and Bob.

As shown in Fig. 7, we design a two-input structure autoen-
coder for reconciliation. The keys of Alice and Bob are first
passed through an adapted Bloom filter [14]. After that, the
output of Bloom filter are compressed into a low-dimensional
space by a pre-trained encoder. Then the subtraction between
the low-dimensional vectors of Alice and Bob will be used as
the input of the decoder to calculate the key mismatches. Since
Alice and Bob are two independent IoV objects, the process
of reconciliation will be executed by both parties separately.
Specifically, on Bob’s side, he only needs to execute the
encoder and send the syndrome code to Alice (the blue part
in Fig. 7). On Alice’s side, she first executes the encoder, and
then calculates the subtraction of the vectors of Alice and Bob
which is sent to the decoder to obtain the mismatches between
Alice and Bob. The details of the proposed reconciliation
method is described below.

The whole model is based on a typical encoder-decoder
structure. However, to perform the task of reconciliation,
traditional autoencoders [25] cannot be used directly. This is
because the autoencoder is designed to compress the input
vector X to a shorter code h and reconstruct the input vector
X by uncompressing h using decoder, and if one party’s key
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information is simply compressed and sent using traditional
autoencoder, it is easy to be intercepted and cracked by an
attacker with information of decoder. To handle this problem,
the keys of Alice and Bob are first passed through an adapted
Bloom filter [14] to protect the keys against reverse engi-
neering attack. This specially designed Bloom filter can retain
position information, which means that its output can retain the
same number of mismatched bits as the input key. Although
Eve may try to deduce the final key by eavesdropping on
probing packets and syndrome, the initial key obtained by
eavesdropping is different from the final key generated by the
Bloom filter disclosed by syndrome.

Suppose Alice and Bob have generated their initial keys
KAlice ∈ RN and KBob ∈ RN independently. KBob and
KAlice are used as the input of two different encoders con-
taining Bloom filter and Multilayer Perceptron (MLP). Bloom
filters firstly convert the KBob and KAlice to K ′

Bob and K ′
Alice.

Then K ′
Bob and K ′

Alice pass through MLP f1 and MLP f2
to get the code vectors yBob = f1(K

′
Bob) and yAlice =

f2(K
′
Alice), where yAlice ∈ RM and yBob ∈ RM . Here,

yAlice and yBob are high-dimensional condensed expressions
of Alice’s and Bob’s bit sequences, respectively. Then Bob
transmits the code vector yBob to Alice via a public channel.

Suppose y′Bob is the received vector with some noise:
y′Bob = f1(K

′
Bob) + e. Upon receiving y′Bob, Alice calculates

the following equation: h = y′Bob − yAlice. Note that h
can be approximated as the concentrated expression of the
mismatches between K ′

Alice and K ′
Bob. Transmitting h rather

than K ′
Bob has the following benefits. First, the concentrated

expression cannot be used to extract the final keys without
Alice’s or Bob’s original keys (e.g., KAlice and KBob in
Fig. 7). Therefore, it is safe to be transmitted in unauthen-
ticated channel. Second, it is more energy-efficient because
the size of vector h is much shorter than K ′

Bob.
Then, Alice feeds h into a decoder g to obtain the mis-

matches between K ′
Alice and K ′

Bob: ∆x = K ′
Alice ⊕ K ′

Bob.
Afterwards, Alice can correct the mismatches by simply
calculating K

′′

Alice = K ′
Alice ⊕ ∆x = K ′

Bob, as shown in the
Error Correction block in Fig. 7, and finally they can agree on
the same key. In the proposed network, we use the following
loss function:

argmin
f1,f2,g

∥∆x− (K ′
Bob ⊕K ′

Alice)∥2, (6)

where ∆x represents the decoded mismatches between K ′
Alice

and K ′
Bob. The loss function is designed in this way so that

the distance between the learned mismatches (∆x) and the
real mismatches (K ′

Bob ⊕K ′
Alice) can be minimized.

As mentioned in Sec III, Eve has the ability to modify,
insert and replay messages. So two common attacks can
be performed by Eve during reconciliation process: MITM
and reply attack. Eve can perform MITM attack by im-
personating as Alice or Bob during key generation process
to modify or insert her messages. To solve this problem,
the message authentication code (MAC) method is applied
to maintain the integrity of the message during the rec-
onciliation process. Specifically, Bob appends an additional

Fig. 8: Experimental setup.
MAC message with yBob, so the encoded message sent to
Alice is LBob = {yBob,MAC (K ′

Bob, yBob)}. After receiving
LBob, Alice computes K̃ ′

Alice and checks its authenticity. If
MAC

(
K̃ ′

Alice , yBob

)
̸= MAC (K ′

Bob, yBob), Alice finds that
the message has been modified, indicating there is an attacker
Eve. If MAC

(
K̃ ′

Alice , yBob

)
= MAC (K ′

Bob, yBob), Alice
can confirm that this message is from Bob. For replay attacks,
we can adopt some commonly used methods such as nounces,
timestamps or tagging each message with a session ID [18].

Information reconciliation achieves a higher reliability as
evaluate in Sec. V-D, but also reveals part of the informa-
tion to attackers because Alice and Bob need to exchange
some information via public channel. This problem can be
solved by using privacy amplification methods such as hash
functions [8], [14]. In Vehicle-Key, we apply the commonly
used hash function SHA-128 to improve the randomness of the
final keys. Then the final keys can be used by symmetric key
encryption algorithms such as AES-128 for communications.

V. EVALUATION

A. Experimental Setup

1) Data Collection: Fig. 8 shows the experimental setup
and data collection process. To evaluate the impact of different
devices, we use three different transceivers in the evaluation:
Arduino Uno with Dragino LoRa Shield2 (AVR ATmega328P,
SX1278), MultiTech xDot3 (ARM Cortex-M3, SX1272), Mul-
tiTech xDot4 (ARM Cortex-M3, SX1272). As mentioned in
Sec. II-B, we conduct experiments in four different IoV
scenarios: V2I-Urban, V2I-Rural, V2V-Urban, V2V-Rural. For
each scenario, three identical devices are set up as Alice,
Bob and Eve, respectively. In V2V scenarios, all devices are
placed on the roof of cars. Alice and Bob travel randomly and
the distance between them varies from hundreds of meters to
several kilometers. In V2I scenarios, Bob is placed on the roof
of a building to emulate an infrastructure device, and Alice is
traveling randomly. In both scenarios, we assume the presence
of an attacker Eve, who is several meters away from Alice.
During data collection, she follows Alice’s driving route and
tries to generate the same key. A bird view of urban and rural
environment is shown in (a) and (b) of Fig. 8, respectively.
In total, we collected over 20 hours data and more than

2https://www.dragino.com/products/lora/item/102-lora-shield.html
3https://www.multitech.com/brands/multiconnect-xdot
4https://www.multitech.com/brands/multiconnect-mdot
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2,000,000 arRSSI values on different time of different days.
The communication parameters used in the experiments are
BW = 125 kHz, SF = 12, CR = 4/8 and f0 = 434MHz.

2) System Implementation: The implementation details of
each network is described as follows. We implement the
system on Raspberry Pi 4 which is equipped with 1.5 GHz
Quad core Cortex-A72 and 4 GB RAM and connected via
LoRa transceivers mentioned in Sec. V-A1. The prediction and
quantization model has one layer of BiLSTM and two fully
connected layers with 32 and 64 units. The hyperparameter θ
of joint loss function is set to 0.9, which is selected through
experiments. For the encoder of autoencoder model, each input
is connected to a fully connected layer with 32 units, followed
by a subtraction layer. In the decoder part, 3 fully connected
layers are designed as hidden layers. The units number of the
fully connected layers in decoder are experimented in V-D.
Unless otherwise stated, we randomly split the whole dataset
into three parts: training set (70%), validation set (15%), and
test set (15%). The results after 200 epochs are reported.

3) Metrics: As a shared key generation system, we use
two commonly used metrics: key agreement rate and key
generation rate. For each metric, we report the average result
and stand deviation.

B. Evaluation of arRSSI

First, we evaluate the relationship between the arRSSIs with
different percentages and their linear correlation. As shown in
Fig. 9, as the percentage increases, the correlation between the
two arRSSIs first increases and then decreases. This is because
when the window is small, the rRSSIs measured by Alice
and Bob are within channel coherence time. Thus, the more
correlated samples are used, the higher correlation will be ob-
tained. However, when the window is further increased, more
measurements beyond channel coherence time are included.
As shown in the yellow highlight, the correlation reaches its
highest point when about 10% of rRSSI value are used, so we
use the 10% rRSSI at the end of Alice/Bob and the beginning
of Bob/Alice to form arRSSI.

C. Evaluation of Prediction Module

Then, we evaluate the effectiveness of the proposed pre-
diction model. We compare the key agreement rate with and
without our prediction module. As shown in Fig. 10, the
proposed method consistently achieves higher agreement rate
in all scenarios, indicating our method is effective in improving
the channel measurements correlation and hence the agreement
rate of the generated bits. Specifically, the key agreement rate
can be increased by 5.48%, 11.71% 5.42%, and 10.34% in

V2I-Urban, V2I-Rural, V2V-Urban, and V2V-Rural scenarios,
respectively. Besides, the standard deviation of the results after
prediction module is smaller, which suggests that the proposed
method can achieve more stable results.

D. Evaluation of Reconciliation Module

To evaluate the performance of the proposed reconciliation
module, we compare it with a state-of-the-art CS-based rec-
onciliation method proposed by Xu et al. [8], [14]. Since
they demonstrated that their method is superior to other
conventional methods, we only show the result of the CS-
based method and our method for the benefit of space. We
change the number of units in the hidden layers of decoder
and plot the results of different methods in Fig. 11.

It can be observed that the agreement rate of our method
using different number of units are higher than that of the CS
method. Meanwhile, we notice that the average key agreement
rate of the proposed method increases as the number of units
increases, indicating that the error correction capability is im-
proved with more units in the hidden layer. The stand deviation
of the CS method is higher than our methods, indicating it
has low stability. More importantly, our method can reduce
the computation cost by 10×. The above analysis shows
that the proposed reconciliation method has the advantages
of high stability, strong error correction capability and low
computation cost. We choose AE-64 as the reconciliation
method in the following experiments because it achieves a
good balance between agreement rate and computational cost.

E. Evaluation of System Robustness

In this subsection, we evaluate the robustness of Vehicle-
Key. Specifically, we evaluate the key agreement rate of
Vehicle-Key under different devices and speeds.

Impact of different devices. As shown in the Tab. I,
the key agreement rates using the three devices are close
to each other. On average, Vehicle-Key achieves 99.17%,
98.73%, and 98.73% agreement rate for Dragino LoRa shield,
MultiTech xDot, and MultiTech mDot, respectively. The result
demonstrates that Vehicle-Key can achieve high agreement rate
irrespective of the hardware used.

Impact of different speeds. From Tab. I, we can observe
that as the speed increases, the key agreement rates of all
three devices drop slightly. Specifically, the key agreement
rate drops by 0.36% and 0.64% when the speed increases from
30 km/h to 60 km/h and from 60 km/h to 90 km/h, respec-
tively. However, our system still achieves 99.33%. 98.97%,
and 98.33% agreement rate when the speed of the vehicle is
30 km/h, 60 km/h, and 90 km/h, respectively, demonstrating
the robustness of Vehicle-Key in different moving speeds.

TABLE I: Agreement rate of different devices and speeds.

Device
Speed (Km/h) 30 60 90 Mean

Dragino LoRa Shield 99.50% 99.10% 98.90% 99.17%
MultiTech xDot 99.20% 98.90% 98.10% 98.73%
MultiTech mDot 99.30% 98.90% 98.00% 98.73%
Mean 99.33% 98.97% 98.33% 98.87%
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F. Comparison with State-of-the-arts

In this section, we compare the proposed method with three
representative LoRa-based key agreement approaches, namely,
LoRa-Key [8], Han et al. [9] and Gao et al. [10]. We fine-tune
their parameters to achieve the best performance for the sake
of fairness. Specifically, for Gao et al. [10], the interval and
round number are set to 20 and 50 respectively. For LoRa-
Key, we set α (the ratio of guard band to data in quantization)
to 0.8. The random matrix size of CS-based reconciliation in
LoRa-Key and Gao et al. [10] is set to 20× 64. For cascade
algorithm in Han et al. [9], group length k is set to 3 and the
iteration number is set to 4 in our implementation.

The results of different methods in different environments
are shown in Fig. 12 and Fig. 13. From Fig. 12, we can see
that Vehicle-Key achieves the best key agreement rate in all
the scenarios. The average key agreement rate of Vehicle-Key
is 49.81% higher than LoRa-Key, 20.48% higher than Han et
al. [9], and 15.10% higher than Gao et al. [10]. The stability
(standard deviation) of the key agreement rate obtained by
Vehicle-Key is also superior to other methods. From Fig. 13,
we can observe that the key generation speed of Vehicle-Key
is 9× faster than LoRa-Key and Han et al. [9] and 14× faster
than Gao et al. [10], which demonstrate the advantage of
arRSSI over pRSSI and the superior key agreement ability
of Vehicle-Key. To sum up, the results show that Vehicle-
Key improves the key generation rate, the key agreement rate
significantly compared to the state-of-the-arts.

From the results in Fig. 12 and Fig. 13, we can also see the
impact of different environments. The key generation rate in
rural areas are lower than that of urban areas because there is
less multi-path effect in rural (less buildings and blocks etc.).
The key generation rate in V2V scenario is higher than that of
V2I scenario because there are more channel variations when
both Alice and Bob are moving.
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Fig. 15: Security analysis.

G. Evaluation of System Generalization

In this experiment, we evaluate the performance of Vehicle-
Key in new environments. For brevity, we name the models
trained in the four scenarios as M1 (V2I-Urban), M2 (V2I-
Rural), M3 (V2V-Urban) and M4 (V2V-Rural), respectively.
In this experiment, M1 is selected as the base model (the
results of other models are similar but are not included due
to space limitation). Before applying the model directly to the
new environment, we fine-tune the base model with differ-
ent percentages of training data from the new environment.
Transfer-10% means that 10% of the new data is used to train
the new model on the base model. The result is obtained by
testing the fine-tuned model and traditional trained model on
the testing set of the new scenarios.

From the results in Fig. 14, we can see that in the scenarios
of M1 → M2 and M1 → M4, fine-tuning can make the
model converge quickly. Specifically, fine-tuning only needs
to use 10% of the data to train 20 epochs to significantly
outperform traditional training methods. In the M1 → M3
scenarios, although the agreement rate of transfer-10% is
similar to traditional training after 20 epochs, it saves 90%
of the data and 180 training epochs. And the agreement rate
of transfer-50% and transfer-100% is still higher than that
of the traditional training method after 20 epochs. To sum
up, these results demonstrate the proposed model has good
generalization ability and can quickly adapt to new scenarios
with limited training data.

H. Security Analysis

In this subsection, we analyze the security of Vehicle-
Key against the eavesdropping attack and imitating attack
mentioned in Sec. III.

1) Against Eavesdropping Attack: In an eavesdropping
attack, Eve eavesdrops all the messages between Alice (i.e.,
vehicle) and Bob (i.e., base station) with the aim of deducing
the same key with the eavesdropped information by being
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Fig. 16: arRSSI of Alice, Bob and Eve.

statically placed nearby Bob. As mentioned in Sec. IV-C, the
only message transmitted between Alice and Bob is yBob,
which is the compressed representation of K ′

Bob. We now
evaluate whether Eve can use yBob to generate the same key
by passing it to the trained decoder. Note that we assume
Eve has the full knowledge of the protocol, so she has the
same model as Alice and Bob but not their data. As shown in
Fig. 15(a), Eve can only reach 50.93% agreement rate in urban
environment and 42.18% agreement rate in rural environment.
Therefore, even Alice and Bob exchange some information via
public channel, the information cannot be used to generate
the same key. This is because the exchanged information
yBob is the compressed representation of K ′

Bob, which infers
the difference between Alice’s key and Bob’s Key but not
Eve’s key. Feeding yBob and KEve into the decoder directly
results in wrong corrections and can only achieve about 50%
agreement rate as demonstrated in this experiment.

2) Against Imitating Attack: In the imitating attack,Eve can
observe the behavior of Alice (i.e., vehicle), and she tries
to mimic Alice’s driving route with the aim of generating
a similar arRSSI sequence. Fig. 16 shows the arRSSI traces
of Alice, Bob and Eve in different environments. We can
see that the overall pattern of Eve is similar to Alice and
Bob, but the small-scale variations are totally different. This
is because the channel variations are mainly caused by three
factors: path loss, shadow fading, and small-scale fading. If
Eve follows Alice’s driving route, she can obtain similar path
loss and shadow fading, but she cannot observe similar small-
scale fading due to multi-path effect, which is the main source
of randomness [2], [11]. Fig. 15(b) shows the key agreement
rate of Eve in urban and rural environments. We can observe
that the key agreement rate of Vehicle-Key is 98.96% and
99.15% in urban and rural environment, while the agreement
rate of Eve is only 48.28% and 53.59% in urban and rural
environments, respectively.

TABLE II: NIST test.

NIST Test p-value
Frequency 0.209510
DFT Test 0.708206
Longest Run 0.710984
Linear Complexity 0.398762
Block Frequency 0.925826
Cumulative Sums 0.375082
Approximate Entropy 0.140715
Non Overlapping Template 0.497892

Fig. 17: Power consumption.

As mentioned above, Eve can at most achieve approximately
50% agreement rate, which means if we use 128-bit key
for encryption, the probability of deducing the same key is
extremely low, i.e., 0.5128 = 2.94e−39. Therefore, the fading
nature of the wireless channel guarantees the security of
Vehicle-Key. Eve cannot generate the same key as long as she
is half wavelength (i.e., 34.56 cm for 434MHz LoRa) away
from legitimate devices, which is a realistic assumption in
real-world IoV scenarios.

I. Key Entropy and Randomness

The NIST suite of statistical tests [26] is used to validate
the randomness of the generated keys. This suite outputs
p-values to indicate the randomness of the key sequence.
Conventionally, if p-value is less than 1%, the randomness
hypothesis is rejected which implies the secret key is not
random. From Tab. II, we can see that all the p-values of
different tests are higher than 1%, indicating the generated
keys pass the random test and have high randomness.

J. Power Consumption

As shown in Fig. 17, we use power monitor to evaluate
the computation time and energy consumption required by
Vehicle-Key to generate a 128-bit key. The computation time
and energy consumption of different component is shown in
Tab. III. Note that Alice and Bob perform different steps and
hence have different results. Moreover, the computation time
of privacy amplification is in the order of microsecond, and
hence is not included in Tab. III. The results show that the key
generation can be completed in 3.4ms and incur low energy
consumption on both Alice and Bob.

TABLE III: Power consumption.

Computation time (ms) Energy consumption (mJ)
Alice Bob Alice Bob

Prediction and quantization 3.38 0.42 12.8947 1.44
Reconciliation 0.0308 0.0077 0.1113 0.0278

Total 3.4108 0.4277 13.006 1.4678

VI. RELATED WORK

Physical layer security has attracted considerable attention
in the past decades. A large majority of prior work focus on
legacy wireless communication technologies such as ZigBee
and Wi-Fi. For example, Wang et al. [27] proposed a secret key
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generation method by employing the consistently distributed
phase of channel responses. Xi et al. [5] proposed an authen-
tication and key agreement scheme by using the channel state
information (CSI) of mobile devices. Liu et al. [28] employed
the channel response information from multiple Orthogonal
Frequency-Division Multiplexing (OFDM) subcarriers to pro-
vide fine-grained channel characteristics.

With the popularity of LoRa, researchers started to study
the key generation problem in LPWAN. Ruotsalainen et al. [7]
investigated the impact of different LoRa configurations on the
performance of key generation, including different spreading
factors, bandwidths, and environments. Xu et al. [8] conducted
the first comprehensive feasibility study and designed a com-
plete LoRa key generation protocol which is named LoRa-
Key. Gao et al. [10] proposed a model-based key generation
system for LoRa networks. However, the LoRa devices used in
these studies are assumed to be static and hence the solutions
are not suitable for mobile IoV network. The researchers
in [9] designed a key generation systems for LoRa-based IoV
systems independently. However, they directly apply existing
methods and the evaluation is only conducted in limited
environments.

VII. CONCLUSION

This paper studies the wireless key generation problem
in LoRa-enabled IoV scenarios. We propose a key genera-
tion scheme for LoRa-enabled IoV communications which is
named Vehicle-Key. In Vehicle-Key, we propose a BiLSTM-
based prediction and quantization model that utilizes arRSSI
to solve the low channel reciprocity problem. Additionally,
we propose an autoencoder-based reconciliation approach to
correct the mismatched keys. Extensive real-world evaluation
using three different types of LoRa devices shows that Vehicle-
Key can achieve an average key agreement rate of 98.87%
for two LoRa-enabled IoV objects and outperforms the state-
of-the-arts by 15.10%–49.81%. Meanwhile, security analysis
demonstrates Vehicle-Key is secure against several common
attacks. We also implement the system on Raspberry Pi and
show that Vehicle-Key can generate a 128-bit key in 3.4ms.
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